Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 39 issue 6 (december 2016) : 1003-1012

Growth stimulation of clusterbean (Cyamopsis tetragonoloba) by coinoculation with rhizosphere bacteria and Rhizobium 

Sita Ram Chaudhary, Satyavir Singh Sindhu*
1<p>Department of Microbiology,&nbsp;CCS Haryana Agricultural University, Hisar-1250 04, India</p>
Cite article:- Chaudhary Ram Sita, Sindhu* Singh Satyavir (2016). Growth stimulation of clusterbean (Cyamopsis tetragonoloba) bycoinoculation with rhizosphere bacteria and Rhizobium . Legume Research. 39(6): 1003-1012. doi: 10.18805/lr.v0iOF.8605.

Clusterbean [Cyamopsis tetragonoloba (L.) Taub.] is an important commercially utilizable crop grown in arid zone of India. Microorganisms present in the rhizosphere of this crop produce various plant growth-promoting substances and enhance the availability of nutrients to the plants. Therefore, fifty five bacterial isolates obtained from the rhizosphere of clusterbean were explored for beneficial characteristics. Twenty rhizobacterial isolates produced indole acetic acid ranging from 3.9 to 24.7 µg/mL. Only six isolates HCS7, HCS19, HFS7, HFS9, HFS10 and HFS12 showed d-aminolevulinic acid production varying from 1.3 to 7.0 µg/mL. Fourteen isolates showed solubilization of potassium on mica containing Aleksandrov medium plates. Stimulation of root and shoot growth of clusterbean seedlings on water agar plates was observed by inoculation of eleven rhizobacterial isolates at 5 and 10 days of growth whereas some isolates showed stunting effect on the growth of shoot and root as compared to uninoculated seedlings. At 60 days of plant growth, inoculation of Bradyrhizobium strain GSA11 and Rhizobium strain GSA110 showed significant nodulation and their inoculation resulted in 141.94 and 151.43% gains in shoot dry weight, respectively under chillum jar conditions. Coinoculation of Bacillus isolate HCS43 with Rhizobium strain GSA110 formed 48 nodules/plant and plant dry weight was enhanced by 190.09% in comparison to uninoculated control plants. 


  1. Ahmad, F., Ahmad, I. and Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res., 163: 173-181.

  2. Akhtar, M.S. and Siddiqui, Z.A. (2008). Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Protect., 27: 410–417. 

  3. Andrade, G., De Leij, F.A.A.M. and Lynch, J.M. (1998). Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett. Appl. Microbiol., 26: 311–316

  4. Arshad, M. and Frankenberger Jr., W.T. (1991). Microbial production of plant hormones. Plant Soil, 133: 1-8.

  5. Badr, M.A. (2006) Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. J. Appl. Sci. Res., 2: 1191-1198.

  6. Baig, M.M.V., Baig, M.I.A. and Muley, S.M. (2002). Enhanced growth of groundnut by plant growth-promoting rhizobacteria. Intern. Arachis Newsletter, 22: 60-63. 

  7. Barazani, O. and Friedman, J. (1999). Is IAA the major growth factor secreted from plant growth mediating bacteria? J. Chem. Ecol., 25: 2397-2406. 

  8. Barea, J.M., Navarro, E. and Montoya, E. (1976). Production of plant growth regulators by rhizosphere phosphate-    solubilizing bacteria. J. Appl. Bacteriol., 40: 129-134.

  9. Basak, B.B. and Biswas, D.R. (2010). Coinoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol. Fertil. Soils, 46: 641-648.

  10. Basak, B.B. and Biswas, D.R., (2008). Influence of potassium solubilizing microorganism (Bacillus mucilaginous) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers) grown under two Alfisols. Plant Soil, 317: 235-255.

  11. Benizri, E., Boudoin, E. and Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontr. Sci. Technol., 11: 557-574. 

  12. Bolton, H. Jr. and Elliott, L.F. (1989). Toxin production by a rhizobacterial Pseudomonas sp. that inhibits wheat root growth. Plant Soil, 114: 269-278. 

  13. Burris, R.H. and Roberts, G.P. (1993). Biological nitrogen fixation. Annu. Rev. Nutr., 13: 317-335.

  14. Chaudhary D. and Sindhu, S.S. (2015). Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-    aminocyclopropane-1-carboxylic acid deaminase containing Mesorhizobium strains. Afr. J. Microbiol. Res., 9: 117-124. 

  15. Compant, S., Clement, C. and Sessitch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem., 42: 669-678. 

  16. Dahiya, J.S. and Khurana, A.L. (1981). Chillum jar, a better technique for screening of rhizobia under summer conditions. Plant Soil, 83: 299-302.

  17. Dashti, N., Zhang, F., Hynes, R.K. and Smith, D.L. (1998). Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil, 200: 205-213.

  18. Dey, R., Pal, K.K., Bhatt, D.M. and Chauhan, S.M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res., 159: 371-394.

  19. Dua, S. and Sindhu, S.S. (2012). Effectiveness of rhizosphere bacteria for control of root rot disease and improving plant growth of wheat (Triticum aestivum L.). J. Microbiol. Res., 2: 26-35.

  20. Dubeikovsky, A.N., Mordukhova, E.A., Kochetkov, V.V., Polikarpova, F.Y. and Boronin, A.M. (1993). Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a, synthesizing an increased amount of indole-3-acetic acid. Soil Biol. Biochem., 25: 1277-1281.

  21. Elsheikh, E.A.E. and Ibrahim, K.A. (1999). The effect of Bradyrhizobium inoculation on yield and seed quality of guar (Cyamopsis tetragonoloba L.). Food Chem., 65: 183-187.

  22. Franche, C., Lindström, K. and Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil, 321: 35-59.

  23. Fredrickson, J.K., Elliott, L.F. and Engibous, J.C. (1987). Crop residues as substrate for host - specific pseudomonads. Soil Biol. Biochem., 19: 127-134.

  24. Gealy, D.R., Gurusiddaiah, S. and Ogg, A.G. Jr. (1996). Isolation and characterization of metabolites from Pseudomonas syringae strain and their phytotoxicity against certain weed and crop species. Weed Sci., 44: 383-392.

  25. Glick, B.R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res., 169: 30-39.

  26. Goel, A.K., Sindhu, S.S. and Dadarwal, K.R. (2001). Seed bacterization with fluorescent Pseudomonas enhances the synthesis of flavonoid-like compounds with chickpea (Cicer arietinum L.). Physiol. Mol. Biol. Plants, 6: 195-198.

  27. Gordon, S.A. and Weber, R.P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiol., 26: 192-195. 

  28. Hirsch, A.M. and Fang, Y. (1994). Plant hormones and nodulation: what is the connection? Plant Mol. Biol., 26: 5-9. 

  29. Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y. and Konnai, M. (1997). Promotive effects of 5-aminolevulinc acid on the yield of several crops. Plant Growth Regul., 22: 109-114. 

  30. Hu, X.F., Chen, J. and Guo, J.F. (2006). Two phosphate and potassium solubilizing bacteria isolated from Tiannu mountain, Zhejiang, China. World J. Microbiol. Biotech., 22: 983-990. 

  31. Hynes, R.K., Leung, G.C., Hirkala, D.L. and Nelson, L.M. (2008). Isolation, selection and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can. J. Microbiol., 54: 248-258.

  32. Hyun, K.R. and Song, H.G. (2007). Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol., 17: 1805-1810.

  33. Jangu, O.P. and Sindhu, S.S. (2011). Differential response of inoculation with indole acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and black gram (Vigna mungo L.). Microbiol. J., 1: 159-173.

  34. Kennedy, A. and Stubbs, T. (2007). Management effects on the incidence of jointed goatgrass inhibitory rhizobacteria. Biol. Contr. Theory Applic. Pest Manag., 40: 213-221.

  35. Keyeo, F., Ai’shah, O.N. and Amir, H.G. (2011). The effects of nitrogen fixation activity and phytohormone production of diazotroph in promoting growth of rice seedlings. Biotechnology, 10: 267-273.

  36. Khandelwal, A. and Sindhu S.S. (2012). Expression of 1-aminocyclopropane-1-carboxylate deaminase in rhizobia promotes nodulation and plant growth of clusterbean (Cyamopsis tetragonoloba L.). Res. J. Microbiol., 7: 158-170.

  37. Li, D.M. and Alexander, M. (1988). Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil, 108: 211-219.

  38. Liu, S., Zhang, G., Li, X. and Zhang, J. (2014). Microbial production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol., 98: 7349-7357.

  39. Loper, J.E. and Schroth, M.N. (1986). Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Plant Pathol., 76: 386-389. 

  40. Lugtenberg, B. and Kamilova, F. (2009). Plant growth promoting rhizobacteria. Annu. Rev. Microbiol., 63: 541-556.

  41. Malik, D.K. and Sindhu, S.S. (2011). Production of indole acetic acid by Pseudomonas sp.: Effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants, 17: 25-32.

  42. Masciarelli, O., Llanes, A. and Luna, V. (2014). A new PGPR coinoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol. Res., 169: 609-615.

  43. Mauzerall, D. and Granick, S. (1955). The occurrence and determination of d-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem., 219: 435-446.

  44. Mishra, P.K., Mishra, S., Selvakumar, G., Bisht, J. K., Kundu, S. and Gupta, H.S. (2009). Coinoculation of Bacillus thuringiensis -KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J. Microbiol. Biotechnol., 25: 753-761

  45. Muller, M., Deigele, C. and Ziegler, H. (1989). Hormonal interactions in the rhizosphere of maize (Zea mays L.) and their effects on plant development. Z. Pflanzen Bodenk, 152: 247-254.

  46. Palleroni, N.J. (1984). Family 1. Pseudomonaceae. In: Bergey’s manual of systematic bacteriology, Kreig, N.R. and J. G. Holt (Eds.). Williams and Wilkins, Baltimore, pp: 143-233. 

  47. Parmar, P. and Sindhu, S.S. (2013). Potassium solubization by rhizosphere bacteria: Influence of nutritional and environmental conditions. J. Microbiol. Res., 3: 25-31.

  48. Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S. and Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. Biol. Fertil. Soils, 51: 403-415.

  49. Rao, A.V., Venkatesarlu, B. and Henry, A. (1984). Genetic variation in nodulation and nitrogenase activity in guar and moth. Indian J. Genet. Plant Breed., 44: 425-428.

  50. Remans, R., Bebee, S., Manrique, M.B., Tovar, E., Rao, I., Croonenborghs, A., Torres-Gutierrez, R., El-Howeity, M., Michiels, J. and Vanderleyden, J. (2008). Physiological and genetic analysis of root responsiveness to auxin-    producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil, 302: 149-161. 

  51. Serwar, M. and Kremer, R.J. (1995). Enhanced suppression of plant growth through production of L-tryptophan derived compounds by deleterious rhizobacteria. Plant Soil, 172: 261-269. 

  52. Sindhu S. S., Parmar N., Sunita Suneja, Goel A. K. and Dadarwal K. R. (2002). Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and wilt sick soil conditions. Appl. Soil Ecol., 19: 57-64.

  53. Sindhu, S.S. and Dadarwal, K.R. (2001). Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol. Res., 156: 353-358.

  54. Sindhu, S.S., Gupta, S.K. and Dadarwal, K.R. (1999). Antagonistic effect of Pseudomonas sp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol. Fertil. Soils, 29: 62-68.

  55. Sindhu, S.S., Jangu, O.P. and Sivaramaiah, N. (2010). Genetic engineering of diazotrophic bacteria to improve nitrogen fixation for sustainable agriculture. In: Biotechnology: Emerging Trends, Sayyed, R.Z. and A.S. Patil (Eds.). Scientific Publishers, Jodhpur, India, pp: 73-112.

  56. Sindhu, S.S., Verma, M.K. and Mor, S. (2009). Molecular genetics of phosphate solubilization in rhizosphere bacteria and its role in plant growth promotion. In: Phosphate Solubilizing Microorganisms and Crop Productivity, Khan, M.S. and A. Zaidi (Eds.). Nova Science Publishers, USA, pp: 199-228.

  57. Sivaramaiah, N., Malik, D.K. and Sindhu S.S. (2007). Improvement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. Cicer. Indian J. Microbiol., 47: 51-56.

  58. Sloger, C. (1969). Symbiotic effectiveness and nitrogen fixation in nodulated soybean. Plant Physiol., 44: 1666-1668.

  59. Stafford, R.E. and Lewis, C.R. (1980). Nodulation in inoculated and non-inoculated Kinam guar. PR-3650. Texas University of Agricultural Research and Extension Centre, Chillicothe – Vernon, Texas, 

  60. Sugumaran, P. and Janarthanam, B. (2007). Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J. Agric. Sci. 3: 350-355.

  61. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J. and van der Lelie, D. (2009). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol., 75: 748-757.

  62. Voisard, C., Keel, C., Hass, D. and Defago, G. (1989). Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J., 8: 351-358.

  63. Walia, M., Batra, N. and Goyal, S. (2014). Isolation and characterization of plant growth- promoting rhizobacteria and their application in plant growth. Legume Res., 37: 72-78.

  64. Welbaum, G., Sturz, A.V., Dong, Z. and Nowak, J. (2004). Fertilizing soil microorganisms to improve productivity of agroecosystems. Critic. Rev. Plant Sci., 23: 175-193.

  65. Weller, D.M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97: 250-256.

  66. Xie, H., Pasternack, J.J. and Glick, B.R. (1996). Isolation and characterization of mutants of plant growth promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indole acetic acid. Curr. Microbiol., 32: 67-71. 

  67. Yahalom, E., Okon, Y. and Dovrat, A. (1990). Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic (Medicago polymorpha). Can. J. Microbiol., 36: 10-14.

Editorial Board

View all (0)