Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 5 (october 2017) : 859-863

Reproductive habits are a main component of integral water-use efficiency on common bean

Victor Montero-Tavera, Jorge A. Acosta-Gallegos, Diana Sanzón-Gómez, Ana I. Mireles-Arriaga, Jorge E. Ruiz-Nieto
1Departamento de Agronomía, División de Ciencias de la Vida, Universidad de Guanajuato, Irapuato C.P. 36500, Guanajuato, México.
Cite article:- Montero-Tavera Victor, Acosta-Gallegos A. Jorge, Sanzón-Gómez Diana, Mireles-Arriaga I. Ana, Ruiz-Nieto E. Jorge (2017). Reproductive habits are a main component of integral water-use efficiency on common bean. Legume Research. 40(5): 859-863. doi: 10.18805/lr.v40i04.9008.
Water-Use Efficiency (WUE) integrally determined as seed production per unit of water consumed is a trait of recent interest; however, until now little research has been performed to evaluate the importance of different components as reproductive habits in such trait. The aim of this study was to determine if reproductive habits are a main component of integral WUE on common bean. Pinto Saltillo cultivar of high WUE in spring-summer and autumn-winter cycles generated 39.4 and 43.9 % fewer flowers than the cultivar susceptible to limited water conditions; nevertheless, a lower rate of abortion along with more efficient reproductive habits as the capacity to produce 1.6 seeds more per pod on average permitted Pinto Saltillo to have a higher integral WUE; therefore, reproductive habits had a great impact on the trait here studied and these should be considered on the breeding programs.
  1. Ahlawat, S. and Kaur, D. (2015). Climate change and food production in North West India. Indian J. Agr. Res. 49(6): 544-548.
  2. Ahmed, S. (2009). Effect of soil salinity on the yield and yield components of mungbean. Pak. J. Bot. 41(1): 263-268.
  3. Álvarez, S., Navarro, A., Bañón, S. and Sánchez-Blanco, M.J. (2009). Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Sci. Hortic. 122(4): 579-585.
  4. Angadi, S.V., Cutforth, H.W., Miller, P.R., Mc Conkey, B.G., Entz, M.H., Volkmar, K. and Brandt, S. (2000). Response of three Brassica species to high temperature injury during reproductive growth. Can. J. Plant. Sci. 80:693-710.
  5. Barnabás, B., Jäger, K. and Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. PlantCell. Environ. 31(1): 11-38.
  6. Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Crop Pasture Sci. 56(11): 1159-1168.
  7. Boutraa, T. (2010). Improvement of water use efficiency in Irrigated agriculture: A Review. J. Agron.9(1): 1-8.
  8. Emam, Y., Shekoofa, A., Salehi, F. and Jalali, A.H. (2010). Water stress effects on two common bean cultivars with contrasting growth habits. Am–Eur. J. Agric. Environ. Sci. 9(5): 495-499.
  9. Fang, X., Turner, N.C., Yan, G., Li, F. and Siddique, K.H. (2010). Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J. Exp. Bot. 61(2): 335-345.
  10. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev.29: 185–212.
  11. Galmés, J., Flexas, J., Savé, R. and Medrano, H. (2007). Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil. 290: 139-155.
  12. Gholami, A., Sharafi, S., Sharafi, A. and Ghasemi, S. (2009). Germination of different seed size of pinto bean cultivars as affected by salinity and drought stress. J. Food. Agric. Environ. 7(2): 555-558.
  13. Iannucci, A., Terribile, M.R. and Martiniello, P. (2008). Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crops Res. 106(2): 156-162.
  14. Miah, M.S., Hossain, M.A. and Fakir, M.S.A. (2006). Flower production and yield in five Phaseolus vulgaris genotypes. Legume Res. 29(2): 89-95.
  15. Muñoz-Perea, C.G., Terán, H., Allen, R.G., Wright, J.L., Westermann, D.T. and Singh, S.P. (2006). Selection for drought resistance in dry bean landraces and cultivars. Crop Sci. 46(5): 2111-2120.
  16. Nuñez-Barrios, A., Hoogenboom, G. and Nesmith, D.S. (2005). Drought stress and the distribution of vegetative and reproductive traits of a bean cultivar.Sci. Agr. 62(1): 18-22.
  17. Oya, T., Nepomuceno, A.L., Neumaier, N., Bouças-Farias, J.R., Tobita, S. and Ito, O. (2004). Drought Tolerance Characteristics of Brazilian Soybean Cultivars—Evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field—. Plant Prod. Sci. 7(2): 129-137.
  18. Rockström, J., Barron, J. and Fox, P. (2003). Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. Water productivity in agriculture: Limits and opportunities for improvement. 85199(669): 8.
  19. Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J. and Schaphoff, S. (2008). Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44(9).
  20. Ruiz-Nieto, J.E., Aguirre-Mancilla, C.L., Acosta-Gallegos, J.A., Raya-Pérez, J.C., Piedra-Ibarra, E., Vázquez-Medrano, J. and Montero-    Tavera, V. (2015). Photosynthesis and chloroplast genes are involved in water-use efficiency in common bean. Plant Physiol. Biochem.86: 166-173.
  21. Shadakshari, T.V., Yathish, K.R., Kalaimagal, T., Gireesh, C., Gangadhar, K. and Somappa, J. (2014). Morphological response of soybean under water stress during pod development stage. Legume Res. 37(1): 37-46.
  22. Talukdar, D. (2011). Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses. IJCR. 2(1): 46-54.
  23. Terán, H. and Singh, S.P. (2002). Comparison of sources and lines selected for drought resistance in common bean. Crop Sci. 42(1): 64-70.
  24. Turner, N.C., Colmer, T.D., Quealy, J., Pushpavalli, R., Krishnamurthy, L., Kaur, J., Singh, G., Siddique K.H.M. and Vades, G. (2013). Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil. 365(1-2): 347-361.
  25. Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D.T., McCourt, P. and Huang, Y. (2005). Molecular tailoring of farnesylation for plant drought tolerance and yield protection. The Plant Journal. 43(3): 413-424. 

Editorial Board

View all (0)