- Ahmad, F., Gaur, P. and Croser, J. (2005). Chickpea (Cicer arietinum L.), p. 185-214. In: Singh, R. and Jauhar, P. (eds.). Genetic resources, chromosome engineering and crop improvement –Grain legumes. CRC Press, USA.
- Bates, L., Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207.
- Bellinger, Y. and Larher, F. (1987). Proline accumulation in higher plants: A redox buffer? Plant Physiol. 6:23-27.
- Bergmeyer, H.U., Gawenn, K. and Grassl, M. (1974). Enzymes as biochemical reagents. p 425-522. In: H.U. Bergmeyer (ed.). Methods in Enzymatic Analysis. Academic Press, NY.
- Bogeat-Triboulot, M., Brosché, M., Renaut, J., Jouve, L., Thiec, LD. and Fayyaz, P. (2007). Gradual soil water deletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 143: 876-892.
- Boominathan, P., Shukla, R., Kumar, A., Manna, D., Negi, D., Verma, P.K. and Chattopadhyay, D. (2004). Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. Plant Physiol. 135: 1608-1620.
- Castillejo, M.A., Maldonado, A.M., Ogueta, S. and Jorrín, J.V. (2008). Proteomic analysis of responses to drought stress in sunflower (Helianthus annuus) leaves by 2DE gel electrophoresis and mass spectrometry. Open Proteomics J. 1: 59-71.
- Casonka, L.N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbio. Rev. 53: 121-147.
- Delauney, A.J. and Verma, D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223.
- Echevarria-Zomeño, S., Ariza, D., Jorge, I., Lenz, C., Campo, A.D., Jorrin, J.V. and Navarro, R.M. (2009). Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery. J. Plant Physiol. 166: 233-245.
- Ford, K.L., Cassin, A. and Bacic, A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front. Plant. Sci. 2: 44.
- Garg, R., Sahoo, A., Tyagi, A.K. and Jain, M. (2010). Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochim. Biophysic. Res. Commun. 396: 283-288.
- Gimeno, T.E., Sommerville, K.E., Valladares, F. and Atkin, O.K. (2010). Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate: insights from two contrasting Acacia species. Funct. Plant Biol. 37: 323-333.
- Gunes, A., Inal, A., Adak, M.S., Bagci, E.G., Cicek, N. and Eraslan, F. (2008). Effect of drought stress implemented at pre- or post- anthesis stage some physiological as screening criteria in chickpea cultivars. Russ. J. Plant Physiol. 55: 59-67.
- Hare, P.D. and Cress, W.A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21: 79-102.
- Herppich, W. and Peckmann, K. (2000). Influence of Drought on Mitochondrial Activity, Photosynthesis, Nocturnal Acid Accumulation and Water Relations in the CAM Plants Prenia sladeniana (me-type) and Crassula lycopodioides (pepck-type). Ann. Bot. 86: 611-620.
- Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Christophe, A., Pervent, M., Bouteille, M., Stitt, M., Gibon, Y. and Muller, B. (2010). Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: An integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 154: 357-372.
- Ingle, R.A., Schmidt, U.G., Farrant, J.M., Thomson, J.A. and Mundree, S.G. (2007). Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Cell. Environ. 30: 435-446.
- Khanna, S.M., Taxak, P.C., Jain, P.K., Ssaini, R. and Srinivasan R. (2014). Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress. Appl. Biochem. Biotechnol. 173:2241-2253.
- Kim, C., Lemke, C. and Paterson, A.H. (2009). Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L. Plant Mol. Biol. 70: 1-16.
- Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
- Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Straik, P.C. and Sohrabi, E. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 4: 580-585.
- Najaphy, A., Khamssi, N.N., Mostafaie, A. and Mirzaee, H. (2010). Effect of progressive water deficit stress on proline accumulation and protein profiles of leaves in chickpea. Afr. J. Biotechnol. 9: 7033-7036.
- Oliver, M.J., Jain, R., Balbuena, TS., Agrawal, G., Gasulla, F. and Thelen, J.J. (2011). Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration. Phytochemistry 72: 1273-1284.
- Ozturk, Z.N., Talame, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R. and Bohnert, H.J. (2002). Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol. Biol. 48: 551-573.
- Piques, M., Schulze, W.X., Hohne, M., Usadel, B., Gibon, Y., Rohwer, J. and Stitt, M. (2009). Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol. Syst. Biol. 5: 314.
- Plomion, C., Lalanne, C., Claverol, S., Meddour, H., Kohler, A. and Bogeat-Triboulot, M.B. (2006). Mapping the proteome of poplar and application to the discovery of drought stress responsive proteins. Proteomics 6: 6509-6527.
- Roche, J., Hewezi, T., Bouniols, A. and Gentzbittel, L. (2007). Transcriptional profiles of primary metabolism and signal transduction-related genes in response to water stress in field-grown sunflower genotypes using a thematic cDNA microarray. Planta 226: 601-617.
- Singal, H.R., Sheoran, I.S. and Singh, R. (1985). Effect of water stress on photosynthesis and in vitro activities of the PCR cycle enzymes in pigeonpea (Cajanus cajan L.). Photosynthesis Res. 7: 69-76.
- Stewart, G.R. and Lee, J.A. (1972). Desiccation injury in mosses II. The effect of moisture stress on enzyme levels. New Phytol. 71: 461-466.
- Strand, A., Hurry, V., Henkes, S., Huner, N., Gustafsson, P., Gardestrom, P. and Stitt, M. (1999). Acclimation of Arabidopsis leaves developing at low temperatures: increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol. 119: 1387-1398.
- Valentovic, P., Luxova, M., Kolarovic, L. and Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ. 4: 186-191
- Velasco, R., Salamini, F. and Bartels, D. (1994). Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol. Bio. 26: 541-546.
- Watkinson, J.I., Hendricks, L., Sioson, A.A., Heath, L.S., Bohnert, H.J. and Grene, R. (2008). Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum sp. andigena have distinct expression profiles of genes associated with carbon metabolism. Plant Physiol. Biochem. 46: 34-45.
- Xu, C. and Huang, B. (2010). Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J. Plant Physiol. 167: 1477-1485.