Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 39 issue 2 (april 2016) : 183-188

Molecular assessment of genetic divergence in pea genotypes using microsatellite markers

Nilmani Prakash*, Rajeev Kumar, V.K. Choudhary, Chandra Mohan Singh1
1<p>Department of Agricultural Biotechnology and Molecular Biology,&nbsp;Rajendra Agricultural University, Pusa, Samastipur- 848 125, Bihar, India.</p>

A study addressing to biochemical and molecular characterization of nineteen pea genotypes was conducted during rabi – 2012. Study on starch structure indicated that all the field pea genotypes showed simple grains, whereas all the vegetable pea genotypes had compound grains, which looked irregularly star- shaped, indicating the importance of starch structure to distinguish the vegetable pea from the field pea. Out of 26 primer pairs, 10 exhibited different levels of polymorphism amongst the nineteen pea genotypes. A total of fourty-eight allelic variants were detected among them with an average of 4.8 alleles per locus. Cluster analysis grouped all the nineteen genotypes into two broad clusters. The large range of similarity coefficient revealed by SSR markers provided greater confidence for the assessment of genetic divergence and interrelationship among the predicted two groups of field and vegetable peas. A perusal of similarity coefficients clearly reflected that a very high degree of similarity exists between pea genotypes VRP-9 and FP9-552, whereas FP9-557 and HBG found more diverse, may be used in breeding programme to generate the more recombinants. 


  1. Blair, M.W., Diaz, J.M., Hidalgo, R., and Diaz, L.M. (2007). Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 116: 29-43.

  2. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull., 119: 11-15.

  3. Huang, X., Börner, A., Röder, M. and Ganal, M. (2002). Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet., 105: 699-707.

  4. Jha, U.C., Singh, D.P. and Lavany, G.R. (2012). Wide and intra-specific variation in total seed protein in chickpea (Cicer arietinum L.) hybrids through SDS-PAGE. Madras Ag. J., 99: 155-157.

  5. Lelley, T., Stachel, M., Grausgruber, H. and Vollmann, J. (2000). Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome, 43 : 661-668.

  6. McCouch, S.R., Temnykh, S., Lukashova, A. and Coburn, J. (2001). Microsatellite Markers in Rice: Abundance, Diversity and Applications. In: Rice Genetics IV. International Rice Research Institute (IRRI), Manila, 117-135.

  7. Moxon, E.R., and Wills, C. (1999). DNA microsatellites: agents of evolution. Sci. Am., 280: 94-99.

  8. Ram, S.G., Thiruvengadam, V. and Vinod, K.K. (2007). Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Appl. Genet., 48: 337-345. 

  9. Ravi, M., Geetanjali, S., Sameeyafarheen, F. and Maheshwaran, M. (2003). Molecular marker based genetic analysis in rice (Oryza sativa L.) using RAPD and SSR markers. Euphytica., 133 : 243-252.

  10. Sarikamis, G., Yasar, F., Bakir, M. and Kazan, K. (2009). Genetic Characterization of Green Bean (Phaseolus vulgaris) genotypes from Eastern Turkey. Genet. Mol. Res., 8: 880-887.

  11. Smykal, P., Hybl, M., Corander, J., Jarkovsky, J., Flavell, A.J. and Griga, M. (2008). Genetic diversity and population structure of Pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. J. Theor. Appl.Genet., 117: 413-424.

  12. Smýkal, P., Kenicer, G., Flavell, A.J., Corander, J., Kosterin, O., Redden, R.J., Ford, R., Coyne, C.J., Maxted, N. and Ambrose, M.J. (2011). Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet. Res., 9: 4–18.

  13. Stachel, M., Lelley, T., Grausgruber, H. and Vollmann, J. (1999). Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100: 242–248.

  14. Wierdl, M. (1997). Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics.,    146: 769-779.

  15. Yoon, M.S., Doi, K., Kaga, A., Tomooka, N. and Vaughan, D.A. (2000). Analysis of genetic diversity in the Vigna minima and related species in east. Asian J. Plant Res., 113: 375-386.

     

Editorial Board

View all (0)