Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 5 (october 2017) : 846-852

Effect of exogenous nitric oxide (NO) supply on germination and seedling growth of mungbean (cv. Nm-54) under salinity stress

Muhammad Salahuddin, Fahim Nawaz, Muhammad Shahbaz, Muhammad Naeem, Bilal Zulfiqar, Rana Nauman Shabbir, Rai Altaf Hussain
1<p>Department of Agronomy, UCA and ES,&nbsp;The Islamia University of Bahawalpur, Pakistan.</p>
Cite article:- Salahuddin Muhammad, Nawaz Fahim, Shahbaz Muhammad, Naeem Muhammad, Zulfiqar Bilal, Shabbir Nauman Rana, Hussain Altaf Rai (2017). Effect of exogenous nitric oxide (NO) supply on germination and seedlinggrowth of mungbean (cv. Nm-54) under salinity stress . Legume Research. 40(5): 846-852. doi: 10.18805/lr.v0i0.8399.

The present study evaluated the effects of exogenous NO supply, using sodium nitroprusside (SNP) as a source of NO, on germination and seedling growth of mungbean (Vigna radiata) under salt stress conditions. The results showed that the seeds treated with NO solution (0.2 mM SNP) exhibited 80% and 109% higher germination percentage and germination stress tolerance index (GSI) than untreated seeds (control) under salt stress conditions. Similarly, the seedlings fertigated with NO maintained the highest values of 77.8%, 84.3%, 77.2%, 60.5% and 100.3% for plant height stress tolerance index (PHSI), root length stress tolerance index (RLSI), shoot fresh weight stress tolerance index, root fresh weight stress tolerance index (RFSI) and dry matter stress tolerance index (DMSI), respectively. Moreover, the NO fertigated seedlings maintained 57% higher chlorophyll contents than control seedlings. It is concluded that exogenous NO supply is an effective approach to ensure uniform stand establishment in saline regions of the world.


  1. Alavi, N.S. M., Arvin, M. J. and Manoochehri Kalantari, K. (2014). Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings. J. Plant Interact., 9: 683-688.

  2. Ashraf, M. and Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59: 206-216.

  3. Ashraf, M.Y., Akhtar, K., Hussain, F. and Iqbal, J. (2006). Screening of different accessions of three potential grass species from Cholistan desert for salt tolerance. Pak J. Bot., 38: 1589-1597.

  4. Batak, I., Deviæ, M., Gibal, Z., Grubišiæ, D., Poff, K.L. and Konjeviæ, R. (2002). The effects of potassium nitrate and NO-donors on phytochrome A-and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci. Res., 12: 253-259.

  5. Bethke, P.C., Libourel, I.G. and Jones, R.L. (2007). Nitric oxide in seed dormancy and germination. Ann. Plant Rev., 27: 153-175.

  6. Chen, J., Xiao, Q., Wang, C., Wang, W.H., Wu, F.H., He, B.Y., Zhu, Z., Ru, Q.M., Zhang, L.L. and Zheng, H.L. (2014). Nitric oxide alleviates oxidative stress caused by salt in leaves of a mangrove species, Aegiceras corniculatum. Aquatic Bot., 117: 41-47.

  7. Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J.M. and Barroso, J.B. (2011). Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci., 181: 604-611.

  8. Fan, H.F., Du, C.X. and Guo, S.R. (2013). Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp. Bot., 86: 52-59.

  9. Frungillo, L., Skelly, M.J., Loake, G.J., Spoel, S.H. and Salgado, I. (2014). S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nature commun., 5.

  10. Hasanuzzaman, M., Nahar, K., Alam, M.M. and Fujita, M. (2012). Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust. J. Crop Sci., 6: 1314.

  11. Hebelstrup, K. H., Shah, J. K. and Igamberdiev, A. U. (2013). The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiol. Plantar., 148: 457-469.

  12. Hoagland, D.R. and Arnon, D.I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nd edit).

  13. Hussain, A.I., Anwar, F., Sherazi, S.T.H. and Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 108: 986-995.

  14. Hussain, R.A., Ahmad, R., Nawaz, F., Ashraf, M.Y. and Waraich, E.A. (2016). Foliar NK application mitigates drought effects in sunflower (Helianthus annuus L.). Acta Physio. Plant., 38, 1-14.

  15. Jisha, K.C., Vijayakumari, K. and Puthur, J.T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plantar., 35: 1381-1396.

  16. Khodarahmpour, Z. (2011). Screening maize (Zea mays L.) hybrids for salt stress tolerance at germination stage. African J. Biotech., 10: 15959-15965.

  17. Kolbert, Z. (2016). Implication of nitric oxide (NO) in excess element-induced morphogenic responses of the root system. Plant Physiol. Biochem., 101: 149-161.

  18. Maswada, H.F. and Abd El Kader, N.I.K. (2016) Redox halopriming: A Promising Strategy for Inducing Salt Tolerance in Bread Wheat. J. Agron. Crop Sci. 202:37-50.

  19. Miao, Y., Lv, D., Wang, P., Wang, X.C., Chen, J., Miao, C. and Song, C.P. (2006). An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. The Plant Cell, 18: 2749-2766.

  20. Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A. and Shabbir, R.N. (2014). Selenium (Se) regulates seedling growth in wheat under drought stress. Adv. Chem., 2014.

  21. Petõ, A., Lehotai, N., Feigl, G., Tugyi, N., Ördög, A., Gémes, K., Tari, I., Erdei and L., Kolbert, Z. (2013). Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Reports., 32: 1913-1923.

  22. Sapra, V.T., E. Sarage, A.O. Anaele and C.A. Beyl. (1991). Varieties differences of wheat and triticale to water stress. J. Agron. Crop Sci. 167:23-28.

  23. Sehrawat, N., Jaiwal, P.K., Yadav, M., Bhat, K.V. and Sairam, R.K. (2013a). Salinity stress restraining mungbean (Vigna radiata(L.)    Wilczek) production: gateway for genetic improvement. Int. J. Agri. Crop Sci. 6: 505-509.

  24. Shabala, S. and Munns, R. (2012). Salinity stress: physiological constraints and adaptive mechanisms. Plant Stress Physiol., 1: 59-93.

  25. Singh, D.P. and Singh, B.B. (2011). Breeding for tolerance to abiotic stresses in mungbean. J. Food Legumes, 24: 83-90.

  26. Šírová, J., Sedláøová, M., Piterková, J., Luhová, L. and Petøivalský, M. (2011). The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci., 181: 560-572. 

  27. Wahid, A., Hameed, M. and Rasul, E. (2004). Salt-induced injury symptoms, changes in nutrient and pigment composition, and yield characteristics of mungbean. Int. J. Agric. Biol., 6: 1143-1152.

  28. Yagmur, M. and Kaydan, D. (2008). Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African J. Biotech, 7.

  29. Yordanov, V.V., Velikova, V. and T. Tsonev V. (2003). Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol, 187-206.

  30. Yu, M., Lamattina, L., Spoel, S.H. and Loake, G.J. (2014). Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol., 202: 1142-1156.

  31. Zhou, Z.S., Guo, K., Elbaz, A.A., Yang and Z.M. (2009). Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ. Exp. Bot., 65: 27-34. 

Editorial Board

View all (0)