Variation in soil biological properties with legume crops in arid region of Rajasthan, India

DOI: 10.18805/lr.v38i6.6723    | Article Id: LR-3128 | Page : 772-780
Citation :- Variation in soil biological properties with legume crops inarid region of Rajasthan, India .Legume Research-An International Journal.2015.(38):772-780
Address :

Department of Agricultural Chemistry & Soil Science, Maharana Pratap University of Agriculture & Technology, Udaipur-313 001, India.

Abstract

A field investigation was carried out in five tehsils of Jodhpur district of Rajasthan, India to study the variation in soil biological properties. Acid phosphatase, alkaline phosphatase, phytase, microbial biomass C (MBC), N ( MBN) and P(MBP) ranged between  1.10-3.45 µg PNP /g soil / h, 2.45 -8.42 µg PNP / g soil / h, 4.15-12.42 µg Pi / g soil / h, 27-52 mg / kg, 5.7-10.9 mg / kg and 1.10-4.10 mg / kg, respectively. Microbial population was higher in the rhizosphere soil compared to non-rhizosphere soil with maximum in Jodhpur (12.85%) followed by Bhopalgarh (11.24%) and Osian (10.70%). In general, phytase activity in soil was 1.4 and 2.75 times higher compared to acid and alkaline phosphatase activities. On an average, the rhizosphere soils contain 12%, 11% and 15% more biomass C, N and P compared to non-rhizosphere soil. Microbial population showed positive and significant correlation with nutrient availability and microbial properties.

Keywords

Arid soil Biological properties Enzyme activity Legumes Microbial population.

References

  1. Ames, B. N. (1966). Assay of inorganic phosphate, total phosphate and phosphatases. Method Enzymology 8: 115-118.
  2. Asea, P. E. A., Kucey, R. M. N. and Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20: 459–464. 
  3. Badalucco, L. and Kuikman, P. J. (2001). Mineralization and immobilization in the rhizosphere. In: The Rhizosphere, biochemistry and organic substances at the soil plant interface. [Pinton R., Varanini Z., Nannipieri P. (Eds.)] Marcel Dekker, New York, pp. 141-196.
  4. Banger, K. C. (2003). Soil micribial biomass and microbial activities as indicators of heavy metal pollution. J. Indian Soc. Soil Sci. 51: 473-483.
  5. Banger, K. C., Kapoor, K. K. and Mishra, M. M. (1990). Soil microbial biomass: Its measurement and as a nutrient source. Indian J. Microbiol. 30: 263-278.
  6. Brookes, P. C., Powlson, D. C. and Jenkinson, D. S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14:319-329. 
  7. Buckley, D. H. and Schmidt, T. M. (2003). Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbio. 5: 441-452.
  8. Carvalhais, L. C., Dennis, P. G., Fedoseyenko, D., Hajirezaei, M. R., Borriss, R. and Wiren, N. V. (2011). Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium and iron deficiency. J. Plant Nutr. Soil Sci. 174: 3-11. 
  9. Das, B. B. and Dkhar, M. S. (2011). Rhizosphere microbial populations and physico chemical properties as affected by organic and inorganic farming practices. American-Eurasian J. Agri. Environ. Sci. 10: 140-150.
  10. De Leij, F. A. A. M., Whipps, J. M. and Lynch, J. M. (1994). The use of colony development for the characterization of bacterial communities in soil and on roots. Micro. Ecol. 27:81–97.
  11. Deng, S. P. and Tabatabai, M. A. (1997). Effect of tillage and residue management on enzyme activities in soils.III. Phosphatases and arylsulfatase. Biol. Fert. Soils 24: 141-146.
  12. Eltrop, L. (1993). Role of ectomycorrhiza in the mineral nutrition of Noeway spruce (Picea abies L.) .Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany.
  13. Goyal, S., Mishra, M. M., Hooda, I. S., Singh, R., Beri, V., Choudhary, M. R., Sandhu, P. S., Pasricha, N. S. and Bajwa, M. S. (1992). Build up of microbial-biomass with continuous use of inorganic fertilizers and organic amendments. Proc. international symposium on nutrient management for sustained productivity 2: 149-151.
  14. Grayston, S. J., Wang, S., Campbell, C. D., Edwards, A. C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30: 369–378.
  15. Hasebe, A., Kanazaba, S. and Takai, Y. (1985). Microbial biomass in paddy soil. II. Microbial-biomass C measured by Jenkinson’s fumigation method. Soil Sci. Plant Nutr. 34: 349-359.
  16. Horwath, W. R., Elliott, L. F. and Lynch, J. M. (1998). Influence of soil quality on the function of inhibitory rhizobacteria. Lett. Appl. Microbiol. 26: 87–92.
  17. Jackson, M. L. (1973). Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi.
  18. Jaeger, C. H., Lindow, I. S. E., Miller, W., Clark, E. and Firestone, M. K. (1999). Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Environ. Microbiol. 65: 2685–2690.
  19. Jenkinson, D. S. and Ladd, J. N. (1981). Microbial biomass in soil: Measurement and turnover. In: Soil Biochemistry, Vol 5, Marcel Dekker, New York, pp. 415-471.
  20. Kucey, R. M. N. (1983). Phosphate solubilizing bacteria and fungi in various cultivated and virgin albreta soils. Canadian J. Soil Sci. 63: 671-678.
  21. Kumar, C., Swarup, A. and Sharma, D. R. (2006). Release of ions from calcium carbonate treated alkaline soil as influenced by organic matter and moisture contents. J. Indian Soc. Soil Sci. 54: 179-184.
  22. Latour, X., Philippot, L., Corberand, T. and Lemanceau, P. (1996). The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil type. FEMS Microbiol. Ecol. 30: 163–170.
  23. Lupwayi, N. Z., Rice, W. A. and Clayton, G. W. (1998). Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 30: 1733–1741. 
  24. Mark, S. (1999). Soil enzyme. In: Soil Microbiology. An exploratory approach. Delmer Publication, pp32. 
  25. Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., Renella, G. and Valori, F. (2007). Microbial diversity and microbial activity in the rhizosphere. Ciencia Suelo (Argentia) 25: 89-97.
  26. Olsen, S. R., Cole, C. V., Watnahe, F. S. and Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Deptt. Agril. Cirl. 939, U.S.A.
  27. Panse, V. G. and Sukhatme, P. V. (2000). Statistical Methods for Agricultural Workers. ICAR, New Delhi, 359p. Panwar, J., Aseri, G. K. and Yadav, B. K. (2003). Dehydrogenase and phosphatase activities in rhizosphere soils of different plant species of arid region. Geobios 30: 188-190.
  28. Powlson, D. S. and Jenkinson, D. S. (1976). The effects of biocidal treatments on metabolism in soil. II. Gamma irradiation, autoclaving, air-drying and fumigation with chloroform or methyl bromide. Soil Biol. Biochem. 19: 179-188.
  29. Rao, A. S. and Singh, R. S. (1998). Climatic features and crop production. In Fifty years of arid zone research in India, [Faroda AS, Singh M (Eds.)] CAZRI, Jodhpur, pp. 17-38.
  30. Rovira, A. D. (1965). Interactions between plant roots and soil micro-organisms. Annual Reviews in Microbiol. 19:241–266.
  31. Scholter, M., Dilly, O. and Munch, J. C. (2003). Indicators for evaluating soil quality. Agri. Ecosys. Environ. 98: 255-262.
  32. Shen, S. M., Pruden, G. and Jenkinson, D. S. (1984). Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbiol biomass nitrogen Soil Biol. Biochem. 16: 437-444. 
  33. Singh, J. S., Raghubanshi, A. S., Singh, R. S. and Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and Savanns. Nature 338: 499-500.
  34. Smith, J. L. and Paul, E. A. (1990). The significance of soil microbial biomass estimations. In Soil Biochemistry vol 6, Bollag J. M., Stotzky G. (Eds.) Marcel Dekker, New York, pp.357-396.
  35. Sørensen, J. (1997). The rhizosphere as a habitat for soil microorganisms. In Modern soil microbiology, Van Elsas J. D., Trevors J. T., Wellington E. M. H. (Eds.) Marcel Dekker, Inc., New York, pp. 21–45.
  36. Subbiah, B. V. and Asija, C. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 25: 259-260.
  37. Tabatabai, M. A. (1994). Soil Enzymes. In Microbiological and Biochemical Propoerties. pp.775-883. SSA Book Series No.5 Madison WI.
  38. Tabatabai, M. A. and Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307.
  39. Tarafdar J. C., Jungk A. (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Soil Biol. Biochem. 3: 199-204. 
  40. Tarafdar, J. C., Bareja, M. and Panwar, J. (2003). Efficiency of some phosphate producing soil- fungi. Indian J. Microbiol. 43: 27-32.
  41. Toth, S. J. and Prince, A. L. (1949). Estimation of cation exchange capacity and exchangeable Ca, K and Na content of soil by flame photometer technique. Soil Sci. 67: 439-445.
  42. Vance, E. D., Brookes, P. C. and Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19: 703-706.
  43. Walkley, A. J. and Black, I. A. (1934). Estimation of soil organic carbon by chromic acid titration method. Soil Sci. 37: 29-38.
  44. Wardle, D. A. and Nicholsion, K. S. (1996). Synergistic effects of grassland plant species on soil microbial biomass and activity: implications for ecosystem-level effects of enriched plant diversity. Functional Ecol. 10: 410-416.
  45. Westover, K. M., Kennedy, A. C. and Kelley, S. E. (1997). Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J. Ecol. 85:863–873.
  46. Yadav, B. K. and Tarafdar, J. C. (2004). Phytase activity in the rhizosphere of crops, trees and grasses under arid environment. J. Arid Environ. 58: 285-293.
  47. Zak, D. R., Tilman, D., Parmenter, R. R., Rice, C. W., Fisher, F. M., Vose, J., Milchunas, D. and Martin, C. W. (1994). Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study. Ecol. 75: 2333-2347.
  48. Zhu, P., Ren, J., Wang, L., Yang, X. and Tavish, D. M. (2007). Long term fertilization impacts on corn yields and soil organic matter on a clay-loam soil in Northeast China. J. Plant Nutr. Soil Sci. 170: 219-223. 

Global Footprints