Influence of Rhizophagus intraradices and phosphorus fertilization on growth, yield and N P content in grain of Phaseolus vulgaris.

DOI: 10.18805/lr.v0i0.8413    | Article Id: LR-306 | Page : 735-740
Citation :- Influence of Rhizophagus intraradices and phosphorus fertilization on growth,yield and N P content in grain of Phaseolus vulgaris. .Legume Research-An International Journal.2017.(40):735-740

Juan Francisco Aguirre-Medina, Juan Francisco Aguirre- Cadena, Jorge Cadena-Iñiguez, María de Lourdes Arevalo-Galarza, Raymundo Rosas-Quijano and Didiana Galvez-Lopez
Address :

Facultad de Ciencias Agrícolas, Universidad Autónoma de Chiapas, Huehuetán, Chiapas, México

Submitted Date : 26-07-2016
Accepted Date : 27-03-2017


The impact of Rhizophagus intraradices (RI) interaction with phosphorus fertilization on the yield of Phaseolus vulgaris L. var. Negro Tacaná, and the N and P content in plant tissue and grain were determined. The experiment consisted of six treatments:1) Control, 2) RI, 3) 40 kg.ha-1 of P2O5, 4) RI  + 40 kg.ha-1 of P2O5, 5) RI + 26 kg.ha-1 of P2O5, and 6) RI + 13 kg.ha-1 of P2O5, using a randomized block design with four replicates. Results probed that inoculation of plants with RI promoted a better health, growth and grain yield. In particular, grain yield inoculated with RI presented similar values as obtained with inorganic fertilization of 40 kg.ha-1 of P2O5, indicating that inorganic fertilization can be fully substituted by RI. The use of this technology provides an efficient use of soil nutrients, which is translated into a lower investment for producers. 


Mycorrhiza Nitrogen Phosphorus Root colonization Yield components.


  1. Adak, M. S. and Kibritci. M. (2016). Effect of nitrogen and phosphorus levels on nodulation and yield components in faba bean (Vicia faba L.). Legume Research 39 (6): 991-994
  2. Aysan, E. and Demir. S. (2009). Using arbuscular mycorrhizal fungi and Rhizobium leguminosarum Biovar phaseoli against Sclerotinia sclerotiorum (Lib.) de Bary in the common bean Phaseolus vulgaris L. Plant Pathology Journal 8: 74-78. 
  3. Bhattarai, N., Baral. B., Shrestha G. and Yami. K. D. (2011). Effect of mycorrhiza and rhizobium on Phaseolus vulgaris L. Scientific World 9: 66-69. 
  4. Grant, C., Bittman S., Montreal, M., Plenchette., C. and C. Morel. (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science 85: 3-14. 
  5. Irizar-Garza, M. B. G., Vargas-Vázquez. P., Garza-García. D., Tut-Couoh. I.C., Rojas-Martínez., R. Trujillo-Campos., D. García-Silva., J. C. Aguirre-Montoya., S. Martínez-González. A., Alvarado-Mendoza. O., Grajeda-Cabrera. O., Valero-Garza J. and Aguirre-Medina. J.F. (2003). Respuesta de cultivos agrícolas a los biofertilizantes en la región central de México. Agricultura Técnica en México 29: 213-225. 
  6. Jakobsen, I., M.E. Leggett., and A. E. Richardon. 2005. Rizhosphere microorganisms and Plant phosphorus uptake. In: Phosphorus; Agriculture and Environment. Agronomic Monograph no. 46. American Society of Agronomy Crop. p. 437-494. 
  7. Martinez-Romero, E. 2009. Coevolution in Rhizobium-legume symbiosis? DNA and Cell Biology, 28: 361-370. 
  8. Mohan, S., and M. Singh. 2014. Effect of nitrogen, phosphorus and zinc on growth, yield and economic of teosinte (Zea mexicana) fodder. Indian Journal of Agronomy 59: 471-473.
  9. Mortimer, P.E., M.A. Perez-Fernandez and A.J. Valentine. 2012. Arbuscular mycorrhiza mantains nodule function during external NH4+ supply in Phaseolus vulgaris (L.). Mycorrhiza 22: 237-245. 
  10. Phillips, J. and D. S. Hayman. 1970. Improved Procedure for clearing roots and staining parasitic and vesicular mycorrhiza fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158-161.
  11. Qiu, M., H. Zhang., G.X. Wang and Z.Q. Liu. 2008. Effects of nitrogen on plant-microorganism interaction. EurAsian Journal of BioSciences, 2: 34-42, 
  12. Ramana, V., M. Ramakrishna., K. Purushotham and K. Balakrishna Reddy. 2010. Effect of bio-fertilizers on growth, yield attributes and Yield of french bean (Phaseolus vulgaris L.). Legume Research 33 (3): 178–183.
  13. Ravindra, S., K.J. Malik., O.V. S. Thenua and H.S. Jat. 2013. Effect of phosphorus and and bio-fertilizer on productivity nutrient uptake and economics of pigeonpea (Cajanus cajan) + mungbean (Phaseolus radiatus) intercropping system. Legume Research 36 (1): 41-48.
  14. Redecker, D., R. Kodner and L.E. Graham. 2000. Glomalean fungi from the Ordovician. Science 289: 1920-1921. 
  15. Ryan, M.H., A.F. Van-Herwaarden., J.F. Angus and J.A. Kirkegaard. 2005. Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonization by arbuscular mycorrhizal fungi. Plant and Soil 270: 275–286. 
  16. Singh, N., G. Singh and V. Khanna. 2016. Growth of lentil (Lens culinaris Medikus) as influenced by phosphorus, Rhizobium and plant growth promoting rhizobacteria. Indian Journal of Agricultural Research 50 (6): 567-572.
  17. Statistical Analysis System (SAS). 1999-2000. SAS/STAT user´s Guide: Ver 8.1. Cary NC, USA: SAS Institute Inc. 
  18. Tajini, F. and J.J. Drevon. 2012. Phosphorus use efficiency in common bean (Phaseolus vulgaris L.) as related to compatibility of association among arbuscular mycorrhizal fungi and rhizobia. African Journal of Biotechnology 11: 12173-12182.
  19. Valentine A J, Osborne B A, Mitchell D T. 2001. Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci. Hortic. 88: 177-189. 

Global Footprints