Metal uptake by psyllium (Plantago ovata L.) treated with lead (Pb) under semi-arid conditions

DOI: 10.18805/lr.v0i0.7590    | Article Id: LR-293 | Page : 277-281
Citation :- Metal uptake by psyllium (Plantago ovata L.) treated with lead (Pb) under semi-arid conditions .Legume Research-An International Journal.2017.(40):277-281

Zafar Iqbal Khan*, Shehnila Kashaf, Kafeel Ahmad, Nudrat Aisha Akram, Muhammad Ashraf,Syed Usman Mahmood, Muhammad Sohail, Humayun Bashir and  Naunain Mehmood

zikhan11@gmail.com
Address :

Department of Botany, University of Sargodha, Sargodha, Pakistan.

Submitted Date : 10-05-2016
Accepted Date : 23-02-2017

Abstract

Psyllium plants were treated with different doses of lead (Pb) and different plant parts and seeds were analyzed. Iron (Fe) contents were found to be lower than the toxic level (Soil 2396.9, seeds 691.5, roots 1516.6, leaves 1384.5, husks 1226.1µmol kg-1 DW). The leaf Zn contents were above the critical level but lower than the toxic level (295.2 ± 16 µmol kg-1). Leaf manganese (Mn) and Cr levels in P. ovata plants fell within the critical range (232.6 and 0.1923 µmol kg-1 respectively). Lead in soil significantly correlated with Fe and Mn, but non-significantly with Zn and Cr in plants of P. ovata. The transfer ratios of Cr and Zn in plants without Pb treatment were lower as compared to those in plants treated with varying levels of Pb. P. ovata can grow in soils having lead concentration up to 4000 µmol and act as a hyper accumulator of lead.

Keywords

Heavy Metals Medicinal plants Plantago ovata Treatment of lead.

References

  1. Ahmad, K., Akhtar, M. J., Zahir, Z. A. and Jamil, A. (2012). Effect of Cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot. 44: 1569-1574.
  2. Allen, S. E. (1989). Chemical Analysis of Ecological Materials. 2nd ed., Blackwell Scientific Publications London. 
  3. Bannayan, M., Nadjafi, F., Azizi, M., Tabrizi, L., and Rastgoo, M. (2008). Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Indust. Crops Prod. 27, 11-16.
  4. Bhutto, M. A., Sajid, I., Mubarik, A., and Sahar, N. (2009). Monitoring of heavy and essential trace metals in wheat procured form various countries. Int. J. Biol. Biotech. 6, 247.
  5. Campose. (1997). Estudio de la contaminación y fraccionamiento químico de metales pesados en suelos de la Vega de Granada. Doctoral Thesis. University of Granada, Granada, Spain.
  6. Chen, Z. S., and Lee, D. Y. (1997). Evaluation of remediation techniques on two cadmium polluted soils in Taiwan. In: [Iskandar A., Adriano D.C. (eds.)]: Remediation of Soils Contaminated with Metals Science Reviews, Northwood, 209–223.
  7. Dabkowshna-Naskret, H., Jaworshia, H., Barthio-Wiak, A., and Rozanskai, S. Z. (2004). M: Pr Komie, NaukRol, Biology BTN, 52, 31-40.
  8. Espinoza, J. E., McDowell, L. R., Wilkinson, N. S., Conrad, J. H., and Martin, F. G. (1991.) Monthly variation of forage and soil minerals in Central Florida. II. Trace Minerals. Commun. Soil Sci. Plant Anal. 22: 1137-1149.
  9. Grace, N. D. (1983). The mineral requirement of grazing ruminants. In [Grace ND (ed)] Occas. publ.9.9. New Zealand Society of Animal Production, Wellington, New Zealand, pp. 134-35.
  10. Gune, A., Alpaslan, M. A., and Ina, L. (2004.) Plant growth and fertilizer. Ankara, Univ. Agriculture Pub. No. 1539, Ankara, Turkey (in Turkish), pp. 155-60.
  11. Jones, J. B. (1972). Plant tissue analysis for micronutritrients. [J.J. Mortvedt, P. M. Giordano, and W. L. Lindsay (eds.)] Micronutrients, pp. 319.
  12. Kaplan, L. A., Pesce, A. J., and Kazmierczak, S. C. (1993.) Theory, Analysis, Correlation, In: Clinical Chemistry 4th Ed., Published by Mosby, pp. 707.
  13. Khan, M. A. (2003) Halophytes of Pakistan: Distribution and Ecology. [H. Lieth and M. Moschenko. Cash crop halophytes: Recent Studies: 10 years after the Al-Ain meeting (Tasks for Vegetation Science, 38). Kluwer Academic Press, Netherland, 167-188. 
  14. Khan, Z. I., Ashraf, M., Hussain, A., and McDowell, L. R. (2005). Seasonal variation of trace elements in a semiarid pasture. Pak. J. Bot. 37: 1471-1484.
  15. Khinchi, M. P., Gupta, M. K., Bhandari, A., Agarwal, D., and Sharma, N. (2011). Studies on the disintegrant properties seed powder, husk powder and mucilage of Plantago ovata by formulation of orally disintegrating tablet. Int. J. Pharm. Sci. Res. 2: 159-166.
  16. Marin, A., Alonso-Martirena, J. I., Andrades, M., and Pizarro, C. (2000). Contenido de metales pesados en suelos de viñedo de la D.O.Ca. Rioja. Edafología 7: 351-357.
  17. Martins, B. L., Cruz, C. C. V., Luna, A. S., and Henriques, C. A. (2006). Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass. Biochem. Engineer. J. 27:310-314.
  18. McDowell, L. R., Kiatoko, M., Bertrand, J. E., Chapman, H. L., Pate, F. M., Martin, G., and Conrad, J. H. (1982). Evaluating the nutritional status of beef cattle from four soil order regions of Florida: II. Trace minerals. J. Anim. Sci. 55: 38-47.
  19. McDowell, L. R. (1985). Nutrition of Grazing Ruminants in Warm Climates. Academic Press New York, pp. 443.
  20. Mench, M., Didier, V. L., Loffler, M., Gomez, A., and Masson, P. (1994). A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual. 23: 58-63.
  21. NRC. (1984). Nutrient Requirements of Beef Cattle.6th Revised Ed. Nutrient. 
  22. Ogbonna, P. C., and Okezie, N. (2011). Heavy metal level and macronutrient contents of roadside soil and vegetationin Umuahia, Nigeria.Terrest. Aquat. Environ. Toxicol. 5: 35-39.
  23. Orden, E. A., Serra, A. B., Serra, S. D., Agenon, C. P., Curz, E. M., and Curz, C. L. (1999). Mineral concentration of blood of grazing goats and some forage in Lahar, Lader area of central znzon, Phillipines, East Asian. Aust. J. Anim. Sci. 12: 422-428.
  24. Parvathi, K., Nagendran, R., and Nareshkumar, R. (2007). Lead biosorption onto waste beer yeast byproduct, a means to decontaminate effluent generated from battery manufacturing industry. Electroni Journal of Biotechnology (online), http://    www.ejbiotechnology.info/content/ vol10/ issue1/full/13/index.html.
  25. Pastrana, R., McDowell, L. R., Conrad, J. H., and Wilkinson, N. S. (1991). Macromineral status of sheep in the Paramo region of Colombia. Small Rumin. Res. 5: 9-21.
  26. Prabowo, A., McDowell, L. R., Wilkinson, N. S., Wilcox, C. J., and Cornad, J. H. (1990). Mineral Status of Grazzinmg cattle in South Sulawesi, Indonesia; I. Macrominerals. Am. J. Anim. Sci. 4: 111-120.
  27. Rhue, R. D., and Kidder, G. (1983). Analytical procedures used by the IFAS extension soil laboratory and the interpretation of results. Soil Sci. Department, University of Florida, Gaineville, FL. 
  28. Rinne, R. W., and Langsron, R. G. (1960). Effect of growth on redistribution of some mineral elements in peppermint. Plant Physiol. 35: 210-215.
  29. Ruana, A., Poschenrieder, C. H., and Arcelo, J. (1988). Growth and biomass partitioning in zinc-toxic bush beans. J Plant Nutr. 11: 577-588. 
  30. Shanker, A. K., Cervantes, C., Loza-Tavera, H., and Gam, S. A. (2005). Chromium toxicity in plants. Environ. Intern. 31:739-753. 
  31. Singh, D., Nath, K., and Sharma, Y. K. (2007). Response of wheat seed germination and seedling growth under copper stress. J Environ. Biol. 28: 409-414.
  32. Smith, S. R. (1996). Agricultural Recycling of Sewage Sludge and the Environment. CAB International, Wallingford, pp. 382.
  33. Tahir, Z. (2007). Air pollution exposes laborites to asthma. Newspaper Articles Dawn, 4, 5. 
  34. Viets, F. G., and Lindsay, W. L. (1973). Testing soil for zinc, copper, manganese and iron. In:[ L. M. Walsh and J. Beaton (eds.)], Soil Testing and Plant Analysis. Soil society of America, Madison, WI. pp. 153-172.
  35. WHO. (1996). Evaluation of Certain Food Additives and Contaminants. WHO Technical Report Series 776, Geneva: World Health Organization.
  36. Zahir, E., Imran, I., and Mohyuddin, S. (2009). Market Basket Survey of selected metals in fruits from Karachi city (Pakistan). J Basic Appl Sci 5: 47.

Global Footprints