SPATIAL DIVERSITY OF FREE LIVING RHIZOBIA PRESENT IN RHIZOSPHERE SOILS OF SIX DIFFERENT PHYSIOGRAPHIC REGIONS OF MAHARASHTRA, India

DOI: 10.5958/j.0976-0571.37.2.025    | Article Id: LR-2853 | Page : 165-174
Citation :- SPATIAL DIVERSITY OF FREE LIVING RHIZOBIA PRESENT IN RHIZOSPHERE SOILS OF SIX DIFFERENT PHYSIOGRAPHIC REGIONS OF MAHARASHTRA, India.Legume Research-An International Journal.2014.(37):165-174
D.R. Murumkar, S.G. Borkar and V.P. Chimote
Address : Department of Plant Pathology and Agricultural Microbiology, Mahatma Phule Krishi Vidyapeeth, Rahuri – 413 722, India

Abstract

A total of 76 free living Rhizobia isolates were recovered from the rhizosphere soils of six different physiographic regions of Maharashtra. The distinct variation was observed in colony and cell morphology among different isolates. A significant variation was observed in the nitrogenase activity from 1.9 to 119.7 nmol C2H4 mg protein-1 hr-1 among the 76 Rhizobium isolates. Among six physiographic regions of Maharashtra, Rhizobium isolates from Western Maharashtra exhibited a higher average nitrogenase activity (33.1 nmol C2H4 mg protein-1 hr-1). Based on UPGMA clustering analysis, Rhizobium isolates were classified into three broad clusters and the genetic variation observed among Rhizobium isolates was due to domestication of the isolates in different agro-ecological regions as well as their nitrogenase activity. Based on nitrogen-fixing ability, highly efficient Rhizobium isolates may be further exploited in biofertilizer production.

Keywords

Acetylene reduction activity Genotypic characterization Phenotypic characterization RAPD-PCR Rhizobium spp.

References

  1. Adiguzel, A., Ogutcu, H., Baris, O., Karadayi, M., Gulluce, M. and Sahin, F. (2010) Isolation and characterization of Rhizobium strains from wild vetch collected from high altitudes in Erzurum-Turkey. Romanian Biotechnol. Lett., 15: 5017-5024.
  2. Aneja, K. R. (2003) Experiments in Microbiology, Plant Pathology and Biotechnology. New Age International Publishers, New Delhi, India. pp. 1-607.
  3. Bedmar, E. J. and Olivares, J. (1979) Nitrogen fixation (acetylene reduction) by free-living Rhizobium meliloti. Curr. Microbiol., 2: 11-13.
  4. Cappuccino, J. G and Sherman, N. (1987) Microbiology A Laboratory Manual. The Benjamin/Cummins Publishing Co., USA, pp 1-458.
  5. Challa, O., Gajbhiye, K. S. and Velayutham, M. (1999). Soil Series of Maharashtra NBSS Publ. No. 79, NBSS & LUP, Nagpur, pp 1-428.
  6. Cheruku, V. (2004) Studies on Plant Growth Promoting Rhizobacteria in groundnut (Arachis hypogea L.). An M.Sc.(Agri.) Thesis submitted to M.P.K.V., Rahuri, Maharashtra, India.
  7. El-Fiki, A. A. (2006) Genetic diversity in rhizobia determined by random amplified polymorphic DNA analysis. J. Agri. Soc. Sci., 2: 1-4.
  8. Ilyas, N.; Bano, A. and Iqbal, S. (2008) Variation in Rhizobium and Azospirillum strains isolated from maize growing in arid and semiarid areas. Int. J. Agri. Biol., 10: 612-618.
  9. James, G. C. (1978) Native Sherman Rockland Community College, State University of New York. The Benjamin/    Cummins Publishing Co., Inc. pp. 75-80.
  10. Jordan, D. C. (1986) Family III. Rhizobiaceae Conn. 1938, 321AL. In: Bergy’s Manual of Systematic Bacteriology (Buchnan, R.E. and Gibbons, N.E., ed.), Williams and Wilkins Co., Baltimore. 2: 234-256.
  11. Kaneshiro, T.; Baker, F. L. and Johnson, D. E. (1983) Pleomorphism and acetylene- reducing activity of free-living rhizobia. J. Bacteriol., 153: 1045-1050.
  12. Kaneshiro, T.; Crowell, C. D. and Hanrahan, R. F. (1978) Acetylene reduction activity in free-living cultures of rhizobia. Int. J. Syst. Bacteriol., 28:27-31.
  13. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-75.
  14. Megha, Y. J.; Alagawadi, A. R. and Krishnaraj, P. U. (2007) Diversity of fluorescent pseudomonads isolated from the forest soils of the Western Ghats of Uttara Kannada. Curr. Sci., 93: 1433-37.
  15. Naz, I.; Bano, A. and Hassan, T. U. (2009) Morphological, biochemical and molecular characterization of rhizobia from halophytes of Khewra Salt Range and Attock. Pak. J. Bot., 41: 3159-3168.
  16. Nei, m. and Li, w. h. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Pro. Nat. Acad. Sci. USA. 76: 5269-73.
  17. Pagan, J. D.; Child, J. J., Scowcroft, W. R. and Gibson, A. H. (1975). Nitrogen fixation by Rhizobium cultured on a defined medium. Nature, 256: 406-407.
  18. Panse, V. S. and Sukhatme, P. V. (1985) Statistical Methods for Agricultural Workers. ICAR, New Delhi, pp 152-55.
  19. Rajasundari, K.; Iiamurugu, K. and Logeshwaran, P. (2009) Genetic diversity in rhizobial isolates determined by RAPDs. Afr. J. Biotechnol., 8: 2677-2681.
  20. Ramaswamy, P. and Bal, A. K. (1987) Asymbiotic nitrogen fixation by Rhizobium sp. 127E15 in culture and in the lima bean rhizosphere. Curr.Microbiol., 15: 223:228.
  21. Rohlf, F. J. (1998) Numerical taxonomy and multivariate analysis system, Version 2.0 (Exeter Software, New York).
  22. Sikora, S. and Redzepovic, S. (2003) Genotypic characterization of indigenous soybean rhizobia by PCR-RFLP of 16S rDNA, rep-PCR and RAPD analysis. Food Technol. Biotechnol., 41: 61-67.
  23. Sneath, P. H. A. and Sokal, R. R. (1973) Numerical Taxonomy. Freeman san francisco, pp 1-573 San Francisco.
  24. Venkateswarlu, B., Hari, K. and Katyal, J. C. (1997) Influence of soil and crop factors on the native rhizobial populations in soils under dryland farming. Appl. Soil Ecol., 7: 1-10.
  25. Zehr, J. P.; Jenkins, B. D.; Shortand, S. M. and Steward, G. F. (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol., 5: 539-54.

Global Footprints