Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 36 issue 6 (december 2013) : 475-483

IDENTIFICATION OF PEANUT (Arachis hypogaea L.) VARIETIES THROUGH CHEMICAL TESTS AND ELECTROPHORESIS OF SOLUBLE SEED PROTEINS

P.S. Rao*, M. Bharathi, K. Bayyapu Reddy
1Seed Research and Technology Centre, A.N.G.R. Agricultural University, Hyderabad-500 030, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Rao* P.S., Bharathi M., Reddy Bayyapu K. (2024). IDENTIFICATION OF PEANUT (Arachis hypogaea L.) VARIETIES THROUGH CHEMICAL TESTS AND ELECTROPHORESIS OF SOLUBLE SEED PROTEINS . Legume Research. 36(6): 475-483. doi: .
The ability to characterize and identify plant varieties is fundamental to several aspects of seed trade. Thirty five genotypes of peanut (Arachis  hypogaea L.) which  are  in  demand  and  in  seed  production  chain  were  characterized by utilizing the biochemical tools like total  soluble  seed  proteins  and seed and seedling  characteristics  for  their  reaction  to  NaOH, KOH, GA3  and  2,4-D tests. It  was  possible  to  differentiate  between  all  the  cultivars  into  different  groups  like  light  brown   and  dark  brown  and  also  low, moderate  and  high  response  of  coleoptile  to  respective  chemicals. The  banding  pattern  of  soluble  seed  proteins  by  SDS-PAGE  was  quite  different  for each  of  these  genotypes  individually. The number of  bands  in  different  molecular  weight  ranged  from  11  to  28. The   genotype GG 12 exhibited least number (11) of bands and the genotype GG 20 produced maximum number (28) of bands. The  seed  protein profiles of the genotypes  revealed  the qualitative and quantitative  variation  among  the  different  genotypes, thus indicating  the usefulness of  electrophoretic  variation  in  varietal  identification.
  1. Asif Javaid, Abdul Ghafoor and Rashid Anwar (2004). Seed storage protein electrophoresis in groundnut for evaluating genetic diversity. Pakistan J. Bot. 36:25-29.
  2. Beena Anto, K. and Jayaram, K.M. (2010). Electrophoretic variations in seed protein profile of green pea (Pislfm satiill.m1l.) and soybean [glycine m4x(l.)merr.] Seeds and Seedungs during early stages of germination under heat-stress. Legume Res. 33(3):171-177.
  3. Bianchi Hall, C.M., Keys, R.D. and Stalker, H.T. (1994). Use of Seed Protein Profiles to Characterize Peanut Cultivars. Peanut Sci. 21: (2) 152-159.
  4. Biradar Patil, N.K., Sangeeta Macha, B.N., Motagi, U.K., Hulihalli and Hanchinal, R.R. (2008). Identification and grouping of safflower genotypes through chemical tests. 7th International Safflower conference WAGGA, Australia nkbpo3@rediffmail.com
  5. Chakrabarthy, S.K. and Agrawal, R.L. (1990). Identification of black gram varieties III. Utilization of seedling growth response to added chemicals. Seed Res. 18:34-39.
  6. Cheema Nasir Mahmood, Muhammad Azim Malik, Ghulam Qadir and Malik Ashiq Rabbani (2010). Characterization of Castor bean genotypes under various environments using SDS-PAGE of total seed storage proteins. Pakistan J. Bot., 42(3):1797-1805.
  7. Cherry, J.P., Katterman, F.R.H., and Endrizzi, J.E. (1970). Seed esterases, leucine aminopeptidases and catalases of species of the genus Gossypium. Theoretical and Applied Genetics 42: 218-226.
  8. Cooper, S. R. (1987). Report of the rules committee 1983-1986. Seed Sci. and Technol. 15: 555-575.
  9. Faisal Anwar Malik, M., Afsari, S., Qureshi, Muhammad Ashraf, Muhammad Rashid Khan and Asif Javed (2009). Evaluation of genetic diversity in Soybean (Glycine max) lines using seed protein electrophoresis. Australian J. of Crop Sci. 3:107-112.
  10. Javaid, A., Ghafoor, A. and Anwar, R. (2004). Seed storage protein electrophoresis in groundnut for evaluation of genetic diversity. Pak. J. Bot., 36: 25-29.
  11. Ladizinsky, G. (1975) Seed Protein Electrophoresis of the wild and cultivated species of selection FABA of Vicia. Euphytica, 24 : 785 -788.
  12. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage. T4. Nature 227: 680-685.
  13. Liang, X.Q., Luo, M., Holbrook, C.C. and Guo, B.Z. (2004). Identification of peanut seed storage proteins associated with resistance against Aspergillus flavus infection and aflatoxin production. Proceeding of the thirty-sixth annual meeting of the American Peanut Research and Education Society (APRES). San Antonio, Texas 2004:74. July 13–16, 2004.
  14. Lucchese, C., Dinelli, G., Miggiano, A. and Lovato (1999). Identification of pepper (Capsicum spp) cultivars by field and electrophoresis tests. Seed Sci. and Technol. 27: 37-47.
  15. Payne, R.C. (1987). Seed and cultivar identification. Seed Science and Technology 15: 641-644.
  16. Ullah, I., Ahmad Khan, I., Ahmad, H., Sul- Gafoor S Gul, Muhammad, I. and Ilyas, M. (2010). Seed storage protein profile of rice varieties commonly grown in Pakistan. Asian J. Agri. Sci., 2(4): 120-123.
  17. Vijaya Geetha, V. and Balamurugan, P. (2011). SDS-PAGE Electrophoresis in Mustard Cultivars. Intern. J. Agric. Res. 6(5): 437-444.
  18. Vishwanath, K., Prasanna, K. P. R., Pallvi, H.M., Rajendra Prasad, S., Ramegowda, Devaraju, P.J. and Ananthararayanan, T.V. (2011). Identification of Tomato (Lycopersicon esculentum) Varieties through Total Soluble Seed Proteins. Res. J. Agric. Sci., 2(1): 08-12.
  19. Wouters, T. C. A. and Booy, G. (2000). Stability of esterases and total proteins during seed storage of perennial ryegrass (Lolium perenne L.) and their use for cultivar discrimination. Euphytica 111:161-168.

Editorial Board

View all (0)