Protective role of gamma amminobutyric acid on Cassia italica Mill under salt stress

DOI: 10.18805/lr.v0iOF.9561    | Article Id: LR-254 | Page : 396-404
Citation :- Protective role of gamma amminobutyric acid onCassia italica Mill under salt stress .Legume Research-An International Journal.2016.(39):396-404

Abdulaziz Abdullah Alqarawi, Abeer Hashem1,2, Elsayed Fathi Abd_Allah*, Asma A. Al-Huqail1
Thobayet Safr Alshahrani, Sa’ad Rukban Alshalawi and Dilfuza Egamberdieva3
Address :

Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box. 2460 Riyadh 11451, Saudi Arabia. 

Submitted Date : 15-09-2015
Accepted Date : 30-01-2016


The present study was conducted to evaluate the effect of salinity stress on growth of Cassia italica and role of gamma amminobutyric acid (GABA) in mitigating the salt stress induced damaging effects. Antioxidant activity, level of endogenous growth hormones and other biochemical parameters were evaluated. Salt stress enhanced the production of reactive oxygen species (ROS) resulting in the enhanced lipid peroxidation which was however reduced by application of GABA. Increased lipid peroxidation in salt stressed plants caused an obvious reduction in the total lipid content as compared to GABA treated plants. The antioxidant enzymes were higher in GABA treated plants which indicated a reduction of oxidative damage.

    The concentrations of growth hormones like indole acetic acid (IAA), indole butyric acid (IBA), gibberellic acid-1 (GA1), and gibberellic acid-4 (GA4) were reduced by salt stress, while enhanced by GABA treatment. In addition GABA treated plants maintained lower levels of sodium and chloride ions as compared to salt stressed plants. It could be concluded that toxic effects of salt stress on growth, antioxidant system, hormones and mineral nutrients in Cassia italica could be alleviated by exogenous application of GABA.


Cassia italica Salinity GABA Antioxidants Growth hormones Phenols.


  1. Abd_Allah, E.F., Hashem, A., Alqarawi, A.A. and Alwhibi, M.S. (2015). Alleviation of adverse impact of salt in Phaselous vulgaris L. by arbuscular mycorrhizal fungi. Pak. J. Bot., 47: 1167-1176. 
  2. Ahmad, P., Ashraf, M., Azooz, M.M., Rasool, S. and Akram, N.A. (2014). Potassium starvation induced oxidative stress and antioxidant defense responses in Brassica juncea. J. Plant Inter., 9: 1-9.
  3. Akcay, N., Melike, B., Tugba, K., Filiz, O. and Ismail, T. (2012). Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants, J. Plant Physiol., 169: 452–458.
  4. Alqarawi, A.A., Abd_Allah, E.F., Hashem, A., Al Huqail, A. and Al Sahli, A.A. (2014). Impact of abiotic salt stress on some metabolic activities of Ephedra alata Decne. J. Food. Agri. Environ., 12: 620-625.
  5. AOAC. (1995). Association of Official Analytical Chemists “Official Methods of analysis” (15th ed.). Washington, D.C.
  6. Azooz, M.M., Youssef, A.M. and Ahmad, P. (2011). Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International J. Plant Physiol. Bioch., 3: 253-264.
  7. Babu, M.A., Singh, D. and Gothandam, K.M. (2012). The effect of salinity on growth, hormones and mineral elements in leaf and fruit of tomato cultivar PKM1. J. Animal Plant Sci., 22: 159-164.
  8. Bailly, C., Benamar, A., Corbineau, F. and Come, D. (1996). Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant. 97: 104-110.
  9. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizating the protein dyes binding. Annals Bioch., 72: 248-254.
  10. Carlberg, I. and Mannervik, B. (1985). Glutathione reductase. Methods Enzymology., 113: 484-490.
  11. Cheng, T., Chen, J., Abd_Allah, E.F., Wang, P., Wang, G., Hu, X. and Shi, J. (2015). Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta, DOI 10.1007/s00425-015-2374-5
  12. Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Al-Whibi, M.S., Alenazi, M.M., Egamberdieva, D. and Ahmad, P. (2015a). Arbuscular mycorrhizal fungi mitigates NaCl adverse effects on Solanum lycopersicum L. Pak. J. Bot., 47: 327-340.
  13. Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Aldubise, A. and Egamberdieva, D. (2015b). Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways J. Plant Inter., 10: 230–242.
  14. Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., El-Didamony, G., Alwhibi Mona, S., Egamberdieva, D. and Ahmad, P. (2014). Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak. J. Bot., 46: 2003-2013.
  15. Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Bioch. Biophy., 125: 189-198.
  16. Iqbal, N., Umar, S. and Khan, N.A. (2015). Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J. Plant Physiol., 178: 84-91.
  17. Janicka, R., Katarzyna, K., Marek, B. and Grazyna, K. (2008). Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J. Exp Bot., 59: 3721-3728.
  18. Kamboj, J.S., Blake, P.S., Quinlan, J.D. and Baker, D.A. (1999). Identification and quantitation by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regulation. 28: 199-205.
  19. Kelen, M., Çubek Demiralay, E., ªen, S. and Ozkan, G. (2004). Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri × Vitis rupestris) and rose oil (Rosa damascena Mill.) by reversed phase liquid chromatography, Turkish J. Chem., 28: 603-610.
  20. Koch, T., Krumm, T., Jung, V., Engelberth, J. and Boland, W. (1999). Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid signaling pathway. Plant Physiol., 121: 153-162.
  21. Krishnan, S.K., Laskowski, K., Shukla, V. and Merewitz, E.B. (2013). Mitigation of drought stress damage by exogenous application of a non-protein amino acid gamma-aminobutyric acid on perennial ryegrass. J. Amer. Soc. Hort. Sci., 138: 358-366.
  22. Kusaba, S., Kano-Murakami, Y., Matsuoka, M., Tamaoki, M., Sakamoto, T., Yamaguchi, I. and Fukumoto, M. (1998). Alteration of hormone levels in transgenic tobacco plants over expressing a rice homeobox gene OSH1. Plant Physiol., 116: 471-476.
  23. Lee, I.J., Foster, K.R. and Morgan, P.W. (1998). Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol., 116: 1003-1010.
  24. Luck, H. (1974). Catalases. In: Methods of Enzymatic Analysis. [H. U. Bregmeyer, (Ed.)], Academic Press, New York, USA. 
  25. Malekzadeh, P., Khara, J. and Heydari, R. (2014). Alleviating effects of exogenous Gamma-aminobutyric acid on tomato seedling under chilling stress. Physiol. Mol. Bio. Plants., 2: 133-137.
  26. McCloud, E.S. and Baldwin, I.T. (1997). Herbivory and caterpillar regurgitants amplify the wound induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta., 203: 430-435.
  27. Mehr, Z.S., Khajeh, H., Bahabadi, S.E. and Sabbagh, S.K. (2012). Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. Int. J. Agron. Plant Pro., 3: 710-715.
  28. Mittal, S., Kumari, N. and Sharma, V. (2012). Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol. Bioch., 54: 17-26.
  29. Mukherjee, S.P. and Choudhuri, M.A. (1983). Implication of water stress-induced changes in levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiology., 58: 166-170.
  30. Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Rev. Plant Bio. 59: 651-681.
  31. Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol., 22: 867-880.
  32. Okada, K., Abe, H. and Arimura, G.I. (2015). Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol., 56: 16-27.
  33. Qi, Q.G., Rose, P.A., Abrams, G.D., Taylor, D.C., Abrams, S.R. and Cutler, A.J. (1998). Abscisic acid metabolism, 3-    ketoacyl-coenzyme A synthase gene expression and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol., 117: 979-987.
  34. Rasool, S., Ahmad, A., Siddiqi, T.O. and Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol. Plant., 35: 1039-1050.
  35. Raymond, J., Rakariyatham, N. and Azanza, J.L. (1993). Purification and some properties of polyphenoloxidase from sunflower seeds. J. Phytoch., 34: 927-931.
  36. Shelp, B.J., Gale, B.G., Christopher, P., Trobacher, A.Z., Kristen, D.L. and Carolyn, J.B. (2012). Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science., 193: 130-135.
  37. Shi, S.Q., Shi, Z., Jiang, Z.P., Qi, L.W., Sun, X.M., Li, C.X., Liu, J.F., Xiao, W.F. and Zhang, S.G. (2010). Effects of exogenous GABA on gene expression of Caragana intermediary roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ., 33: 149-162.
  38. Slinkard, K. and Singleton, V.L. (1977). Total phenol analyses: automation and comparison with manual methods. Amer. J. Enol. Viticulture., 28: 49-55.
  39. Smart, R.E. and Bihgham, G.E. (1974). Rapid estimates of relative water content. Plant Physiol., 53: 258-260.
  40. Song, H., Xu, X., Wang, H., Wang, H. and Tao, Y. (2010). Exogenous ã-aminobutyric acid alleviates oxidative damage caused by aluminum and proton stresses on barley seedlings. J. Sci. Food Agri., 90: 1410-1416.
  41. Timson, J. (1965). New method of recording germination data. Nature., 207: 216-217.
  42. Tuna, A.L., Kaya, C., Dikilitas, M. and Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ. Exp. Bot., 63: 1-9.
  43. Van Rossum, M.W.P.C., Alberda, M. and van der Plas, L.H.W. (1997). Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci.,130: 207-216.
  44. Wolf, B. (1982). A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Comm. Soil Sci. Plant Analysis., 13: 1035-1059.
  45. Wu Q., Zou Y.N. and Abd_Allah E.F. (2014). Mycorrhizal Association and ROS in Plants. In: P. Ahmad (Ed): Oxidative Damage to Plants. DOI: © 2014 Elsevier Inc. All rights reserved.

Global Footprints