Synergistic promoting influence of citric acid, spinach and garlic on the bioavailability of iron and zinc from legumes

DOI: 10.18805/lr.v0iOF.9391    | Article Id: LR-230 | Page : 419-426
Citation :- Synergistic promoting influence of citric acid, spinach and garlic onthe bioavailability of iron and zinc from legumes .Legume Research-An International Journal.2016.(39):419-426

Yu-Wei Luo* and Jing Li
Address :

Jinling Institute of Technology, 210038, P. R. China.

Submitted Date : 2-03-2015
Accepted Date : 29-02-2016


Inherent phytic acid and tannins interfere with bioavailability of iron and zinc from plant-based foods. Food acidulants, b-carotene-rich vegetables and Allium spices are understood to promote mineral in vitro bioavailability from legumes. In this study, it has been verified whether these promoters would counter negative effects of phytate and tannin on bioavailability of iron and zinc from legumes. Combinations of promoters – citric acid, spinach and garlic with phytic acid and tannin exogenously added individually were examined for their influence on iron and zinc bioavailability from the legumes. Effect of these promoters was generally dominant in the presence of phytic acid or tannic acid. The negative effect of the inhibitor was not only annulled, but also the positive influence of the promoter was fully retained. This information helps to evolve diet-based strategy to maximize mineral bioavailability and prevent deficiency situations prevalent in population dependent on plant foods.


Bioavailability Inhibitors Iron Zinc Promoters.


  1. Anand, A. N., and Subadra, S. (1995). A quantitative model for prediction of iron bioavailability from Indian meals: An experimental study. Inter. J. Food Sci. Nutr, 46: 335-342.
  2. Anonymous. (2000). Quantification of tannins in tree foliage. 45-48.
  3. Balentine, D. A., Wiseman, S. A., and Bouwens, L. C. M. (1997). The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr, 37: 693-704.
  4. Brune, M., Rossander, L., and Hallberg, L. (1989a). Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Cli. Nutr, 43: 547-557.
  5. Brune, M., Rossander, L., and Hallberg, L. (1989b). Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Cli. Nutr, 43: 547-557.
  6. Gibson, R. S. (1994). Content and bioaccessibility of trace elements in vegetarian diets. Ame. J. Cli. Nutr, 59: 1223S-1232S.
  7. Gibson, R. S., Hotz, C., Temple, C., Yeudall, F., Mtitimuni, B., and Ferguson, E. (2000). Dietary strategies to combat deficiencies of iron, zinc, and vitamin A in developing countries:development, implementation, monitoring, and evaluation. Food. Nutr. Bull, 21: 219-231.
  8. Gibson, R. S., Yeudall, F., Drost, N., Mtitimuni, B., and Cullinan, T. (1998). Dietary interventions to prevent zinc deficiency. Ame. J. Cli. Nutr, 68: 481S-487S.
  9. Gil-Izquierdo, A., Zafrilla, P., and Tomás-Barberán, F. A. (2002). An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur. Food Res. Tech, 214: 155-159.
  10. Gracia-Casal, M. N., Layrisse, M., Solano, L., Baron, M. A., Arguello, F., and Llovera, D. (1998). Vitamin A and b-    carotene can improve non-hemee iron absorption from rice, wheat and corn by humans. J. Nutr., 128: 646-650.
  11. Greger, J. L., and Mulvaney, J. (1985). Absorption, tissue distribution of zinc, iron and copper by rats fed diets containing lactalbumin, soy and supplemental sulphur containing amino acids. J. Nutr, 115: 200-210.
  12. Hallberg, L., and Rossander, L. (1984). Improvement of iron nutrition in developing countries: Comparison of adding meat, soy protein, ascorbic acid, citric acid, and ferrous sulphate on iron absorption from a simple Latin American-    type of meal. Ame. J. Cli. Nutr, 39: 577-583.
  13. Haug, G., and Lantzsch, W. (1983). Methods for determination of phytate of cereal products. J. Sci. Food. Agri, 
  14. 34: 1423-1424.
  15. Hemalatha, S., Platel, K., and Srinivasan, K. (2005). Influence of food acidulants on bioaccessibility of zinc and iron from selected food grains. Mol. Nutr. Food Res, 49: 950-956.
  16. Hurrell, R. F., Reddy, M., and Cook, J. D. (1999). Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Bri. J. Nutr, 81: 289-295.
  17. Liu, B. L., Amjad, R., Tzeng, Y. M., and Rob, A. (1998). The induction and characterization of phytase and beyond. Enz. Mic. Tech, 22: 415-425.
  18. Liu, Z. H., Wang, H. Y., Wang, X. E., Zhang, G. P., Chen, P. D., and Liu, D. J. (2007). Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. J. Cere. Sci, 
  19. 45: 319-326.
  20. Luo, Y. W., Xie, W., H., Hao, Z. P., Jin, X., X., and Wang, Q. (2014). Use of shallot (Allium ascalonicum) and leek (Allium tuberosum) to improve the in vitro available iron and zinc from cereals and legumes. CyTA -Journal of Food, 
  21. 12: 195-198
  22. Luo, Y. W., and Xie, W. H. (2012). Effects of vegetables on iron and zinc availability in cereals and legumes. Inter. Food Res. J, 19: 455-459.
  23. Sandberg, A.-S., & Andlid, T. (2002). Phytogenic and microbial phytases in human nutrition. Inter. J. Food Sci. Tech, 
  24. 37: 823-833.
  25. Siegenberg, D., Baynes, R. D., Bothwell, T. H., Macfarlane, B. J., Lamparelli, R. D., Car, N. G., MacPhail, P., Schmidt, U., Tal, A., and Mayet, F. (1991). Ascorbic acid prevents the dosedependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr, 53: 537-541.
  26. South, P. K., and Miller, D. D. (1998). Iron binding by tannic acid: Effects of selected ligands. Food Chem, 63: 167-172.
  27. Tatala, S., Svanberg, U., and Mduma, B. (1998). Low dietary iron availability is a major cause of anemia: A nutrition survey in the Lindi district of Tanzania. Am J Clin Nutr, 68: 171-178.

Global Footprints