Improving vitamin content and nutritional value of legume yield through water and hormonal seed priming

DOI: 10.5958/0976-0571.2015.00072.7    | Article Id: LR-220 | Page : 185-193
Citation :- Improving vitamin content and nutritional value of legume yield through water and hormonal seed priming.Legume Research.2015.(38):185-193
A. Janeczko*, M. Dziurka1, A. Ostrowska, J. Biesaga-Koscielniak and J. Koscielniak ania@belanna.strefa.pl
Address : Department of Plant Physiology, University of Agriculture in Krakow, Podluzna 3, 30-239 Krakow, Poland.


Seed priming is one of the methods to improve plant vigour, overcome difficult habitat conditions, and consequently obtain a higher yield. Far less is known about effect of parental seed priming on quality of the seeds produced. The aim of our study was to evaluate the effect of water and hormonal (brassinosteroid) seed priming on the chemical content of the seed yield of pea and lupine, grown in a pot experiment and in the field. Pre-sowing water soaking of parental plant seeds resulted in significant increased protein, lipid, sugar, vitamin E, C and provitamin A content in seeds collected from these plants compared to the content in seeds collected from the control plants (without pre-sowing seed soaking). Priming with brassinosteroid enhanced these effects. The results showed that seed priming may be effectively used as a simple method for improving the quality of legume seeds.


24-Epibrassinolide Lupine Nutritional value Pea Seed priming Vitamins.


  1. Ajiawi, I. and Shintani, D. (2004). Engineered plants with elevated vitamin E: a nutraceutical success story. Trends Biotechnol. 22:104–107.
  2. Ali, B., Hayat, S., Hasan, A.S. and Ahmad, A. (2006). Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Sci. Hortic. 110:267–273.
  3. Anuradha, S. and Rao, S.S.R. (2001). Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul. 33:151–153.
  4. Bajguz, A. and Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47:1–8.
  5. Bartley, G.E. and Scolnik, P.A. (1995). Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038.
  6. Biesaga-Koscielniak, J., Dziurka, M., Ostrowska, A., Mirek, M., Koscielniak, J. and Janeczko, A. (2014). Brassinosteroid improves content of antioxidants in seeds of selected leguminous plants. Aust. J. Crop Sci. 8:378–388.
  7. Bligh, E.G. and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917.
  8. Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72:248–254.
  9. Braun, P. and Wild, A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J. Plant Physiol. 116:189–196.
  10. Cazzonelli, C.I. (2011). Carotenoids in nature: insights from plants and beyond. Functional Plant Biol. 38:833–847.
  11. Cheon, J., Park, S-Y., Schulz, B. and Choe, S. (2010). Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biol. 10:270-278.
  12. Choudhary, S.P., Kanwar, M., Bhardwaj, R., Gupta, B.D. and Gupta, R.K. (2011). Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600.
  13. Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A. and Smith, F. (1951). A colorimetric method for the determination of sugars. Nature 168:167–168.
  14. Ella, E.S., Dionisio-Sese, M.L. and Ismail, A.M. (2011). Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB PLANTS 2011 plr007 doi:10.1093/aobpla/plr007.
  15. Fariduddin, Q., Hasan, S.A., Ali, B., Hayat, S. and Ahmad, A. (2008). Effect of modes of application of 28-homobrassinolide on mung bean. Turk. J. Biol. 32:17–21.
  16. Farooq, M., Basra, S.M.A. and Rehman, H. (2006). Seed priming enhances emergence yield and quality of direct-seeded rice. Int. Rice Res. Notes 31:42-44.
  17. Fuji, S. and Saka, H. (2001). Distribution of assimilates to each organ in rice plants exposed to a low temperature at the ripening stage, and the effect of brassinolide on the distribution. Plant Prod. Sci. 4:136–144.
  18. Gallardo, K., Job, C., Groot, S.P.C., Puype, M., Demol, H., Vandekerckhove, J., and Job, D. (2001). Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126:835-848.
  19. Gao, Y.P., Young, L., Bonham-Smith, P. and Gusta, L.V. (1999). Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol. Biol. 40:635–644.
  20. Harris, D., Joshi, A., Khan, P.A., Gothakar, P. and Sodhi, P.S. (1999). On-farm seed priming in semi-arid agriculture: development and evaluation in corn, rice and chickpea in India using participatory methods. Exp. Agr. 35:15–29.
  21. Hasan, S.A., Hayat, S., Ali, B. and Ahmad, A. (2008). 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ. Pollut. 151:60–66.
  22. Hayat, S. and Ahmad, A. (2003). Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Ann. Appl. Biol. 143:121–124.
  23. Hoagland, D.R. and Arnon, D.I. (1950). The water-culture method for growing plants without soil. Circ. 347. Univ. of Calif. Agric. Exp. Station, Berkley.
  24. Iqbal, M. and Ashraf, M. (2007). Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J. Int. Plant Biol. 49:1003–1015.
  25. Janeczko, A., Biesaga-Koœcielniak, J. and Dziurka, M. (2009). 24-Epibrassinolide modifies seed composition in soybean, oilseed rape and wheat. Seed Sci. Technol. 37:625–637.
  26. Janeczko, A. and Swaczynová, J. (2010). Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol. Plant 54:477–482.
  27. Janeczko, A., Biesaga-Koœcielniak, J., Oklešková, J., Filek, M., Dziurka, M., Szarek-£ukaszewska, G. and Koœcielniak, J. (2010). Role of 24-Epibrassinolide in wheat production: physiological effects and uptake. J. Agron. Crop Sci. 196:311–321.
  28. Job, C., Kersulec, A., Ravasio, L., Chareyre, S., Pepin, R. and Job, D. (1997). The solubilization of the basic subunit of sugarbeet seed 11-S globulin during priming and early germination. Seed Sci. Res. 7:225–243.
  29. Kalinich, J.F., Mandava, N.B, and Todhunter, J.A. (1986). Relationship of nucleic acid metabolism to brassinolide-induced responses in beans. J. Plant Physiol. 125:345–353.
  30. Khalil, S.K., Mexal, J.G. and Murray, L.W. (2001). Germination of soybean seed primed in aerated solution of polyethylene glycol 8000. Online J. Biol. Sci. 1:105–107.
  31. Khan, A., Khalil, S.K., Khan, A.Z., Marwat, A. and Afzal, K.B. (2008). The role of seed priming in semi-arid area for mung bean phenology and yield. Pakistan J. Bot. 40:2471–2480.
  32. Nakajima, N., Tsubikoshida, A. and Toyami, S. (1996). Effect of brassinosteroids on cell division and colony formation of Chinese cabbage mesophyll protoplasts. Jap. J. Crop Sci. 65:114–118.
  33. Ozyürek, M., Güçlü, K., Bektasoglu, B. and Apak, R. (2007). Spectrophotometric determination of ascorbic acid by the modified CUPRAC method with extractive separation of flavonoids–La (III) complexes. Analyt. Chim. Acta 588:88-95.
  34. Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, Y., Hinchliffe, E. Adams, J.L., Silverstone, A.L. and Drake, R. (2005). Improving the nutritional value of Golden Rice through increased pro-    vitamin A content. Nature Biotechnol. 23:482–487.
  35. Ramraj, V.M., Vyas, B.N., Godrej, N.B., Mistry, K.B., Swami, B.N. and Singh, N. (1997). Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J. Agric. Sci. 128:405–413.
  36. Rashid, A., Hollington, P.A., Harris, D. and Khan, P. (2006). On-farm seed priming for barley on normal, saline and saline–    sodic soils in North West Frontier Province, Pakistan. Eur. J. Agron. 24:276–281.
  37. Sirhindi, G., Kumar, S., Bharadwaj, R. and Kumar, R. (2009). Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica junceae L. Physiol. Mol. Biol. Plants 15:335–341.
  38. Smirnoff, N. (1996). The function and metabolism of ascorbic acid in plants. Ann. Bot. 78:661–669.
  39. Szarka, A., Tomasskovics, B. and Bánhegyi, G. (2012). The ascorbate-glutathione-±-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13:4458–4483.
  40. Vardhini, B.V. and Rao, S.S.R. (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61:843–847.
  41. Vardhini, B.V. and Rao, S.S.R. (1998). Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea. Phytochemistry 48:927–930.
  42. Yu, J.Q., Huang, L.F., Hu, W.H ., Zhou, Y.H., Mao, W.H., Ye, S.F. and Nogués, S. (2004). A role for brassinosteroids in regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 55:1135–1143.
  43. Zullo, M.A.T. and Kohout, L. (2004). Semisystematic nomenclature of brassinosteroids. Plant Growth Regul. 42:15–28.

Global Footprints