Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 38 issue 3 (june 2015) : 324-333

The effect of moisture content on physical, mechanical and rheological properties of soybean (Glycine max cv. ATAEM-II) seed

Ilknur Alibas*, Nezihe Koksal
1Uludag University, Faculty of Agriculture, Department of Biosytems Engineering, 16059 Bursa, Turkey.
Cite article:- Alibas* Ilknur, Koksal Nezihe (2024). The effect of moisture content on physical, mechanical and rheological properties of soybean (Glycine max cv. ATAEM-II) seed. Legume Research. 38(3): 324-333. doi: 10.5958/0976-0571.2015.00118.6.
Some physical, mechanical and rheological properties of soybean seed (Glycine max cv. ATAEM-II) were identified at moisture content of 8.02±(0.03), 12.08±(0.12), 16.07±(0.11), 20.11±(0.16) and 24.05±(0.09)% w.b. From initial moisture content with 8.02% to final moisture content with 24.05%, the average length, width, and thickness of seed increased by 11.93, 10.64 and 10.47%, respectively. Arithmetic and geometric mean diameters, surface area, terminal velocity, angle of repose, static friction angles and coefficients on aluminum, stainless steel, galvanized iron, rubber, glass and plywood plates increased with increasing moisture content whereas other all properties such as true and bulk densities, porosity, shpericity, aspect ratio, rupture force, hardness, elastic modulus, Poisson’s ratio and energy decreased with increasing moisture content. The minimum friction was determined by glass, followed by aluminum, stainless steel, galvanized iron, plywood and rubber plates at all moisture contents. Elastic Modulus ranged between 118.83 and 100.91N mm-2 at initial and final moisture content, respectively. At the initial and final moisture content, the Poisson ratio changed between 0.527 and 0.262, respectively. The best germination ratio with 98.04% was identified at the 20.11% moisture content while the shortest germination duration with 12.96 days was determined at the 8.02% moisture content.
  1. Abdullah, M.H.R.O., Ch’ng, P.E. and Lim, T.H. (2011). Some physical properties of Parkia speciosa seeds. International Conference on Food Engineering and Biotechnology 9: 43-47.
  2. Aghkhani, M.H., Miraei Ashtiani, S.H., Baradaran Motie, J. and Abbaspour-Fard, M.H. (2012). Physical properties of Christmas Lima bean at different moisture content. International Agrophysics 26: 341-346.
  3. Alibas, I.and Koksal, N. (2012). The determination of several physical, gravimetric and frictional seed properties of melon cultivars. Cucurbitaceae 2012 Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, 10: 482-486.
  4. ASAE, (1997). S352.2 Moisture measurement – unground grain and seeds. Am. Soc. Agric. Eng., St. Joseph, MI, USA.
  5. Aviara, N.A., Power, P.P. and Abbas, T. (2013). Moisture-dependent physical properties of Moringa oleifera seed relevant in bulk handling and mechanical processing.Industrial Crops and Products 42: 96-104.
  6. Balasubramanian, S., Singh, K.K. and Kumar, R. (2012). Physical properties of coriander seeds at different moisture content. International Agrophysics 26: 419-422.
  7. Barnwal, P., Kadam, D.M. and Singh, K.K. (2012). Influence of moisture content on physical properties of maize. International Agrophysics 26: 331-334.
  8. Burubai, W., Amula, E., Davies, R.M., Etekpe, G.W.W. and Daworiye, S.P. (2008). Determination of Poisson’s ratio and elastic modulus of African nutmeg (Monodora myristica). International Agrophysics 22: 99-102.
  9. Gairola, K.C., Nautiyal, A.R. and Dwivedi A.K. (2011). Effect of temperatures and germination media on seed germination of Jatropha Curcas linn. Advanced Bioresearch 2(2): 66-71.
  10. Izli, N., Unal, H. and Sincik, M. (2009). Physical and mechanical properties of rapeseed at different moisture content. International Agrophysics 23: 137-145.
  11. Jaliliantabar, F., Lorestani, A.N. and Gholami, R. (2013). Physical properties of kumquat fruit. International Agrophysics 27: 107-109.
  12. Kara, M., Bastaban, S., Öztürk, I., Kalkan, F. and Yildiz, C. (2012). Moisture-dependent frictional and aerodynamic properties of safflower seeds. International Agrophysics 26: 203-205.
  13. Karaj, S. and Müller, J. (2010). Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha curcas L. Industrial Crops and Products 32: 129-138.
  14. Kareem, I., Owolarafe, O.K. and Ajayi, O.A. (2013). Moisture-dependent physical properties of Kola nut (Cola nitida) seed. Food and Bioprocess Technology 6: 2938-2942.
  15. Kibar, H. and Öztürk, T. (2008). Physical and mechanical properties of soybean. International Agrophysics 22: 239-244.
  16. Kusvuran A. 2015. The effects of salt stress on the germination and antioxidative enzyme activity of Hungarian vetch (Vicia pannonica Crantz.) varieties. Legume Research, 38(1): 51-59.
  17. Mohsenin, N.N. (1986). Physical properties of plant and animals materials. New York, USA: Gordon Breach Science Press.
  18. Molenda, M. and Stasiak, M. (2002). Determination of the elastic constants of cereal grains in a uniaxial compression test. International Agrophysics 16: 61-65.
  19. Razavi, S.M.A., Yeganehzad, S. and Sadeghi, A. (2009). Moisture dependent physical properties of canola seeds. Journal of Agricultural Science and Technology 11: 309-322.
  20. Shirkole, S.S., Kenghe, R.N. and Nimkar, P.M. (2011). Moisture dependent physical properties of soybean. International Journal of Engineering Science and Technology 3(5): 3807-3815.
  21. Singh, K.K., Mridula, D., Barnwal, P. and Rehal, J. (2012). Physical and chemical properties of flaxseed. International Agrophysics 26: 423-426.
  22. Sitkei, G., (1986). Mechanics of agricultural materials. Budapest, Hungary: Akademia Kiado.
  23. Solomon, W.K. and Zewdu, A.D. (2009). Moisture-dependent physical properties of niger(Guizotia abyssinica Cass.) seed. Industrial Crops and Products 28: 165-170.
  24. Taheri-Garavand, A., Nassiri, A. and Gharibzahedi, S.M.T. (2012). Physical and mechanical properties of hemp seed. International Agrophysics 26: 211-215.
  25. Tavakoli, H., Rajabipour, A. and Mohtasebi, S.S. (2009). Moisture-dependent some engineering properties of soybean grains. Agricultural Engineering International: The CIGR Ejournal. Manuscript 1110. Vol. XI. February 2009.
  26. Üçer, N., Kiliçkan, A. and Yalçin, I. (2010). Effects of moisture content on some physical properties of red pepper (Capsicum annuum L.) seed. African Journal of Biotechnology 9(24): 3555-3562.
  27. Ünal, H., Alpsoy, H.C. and Ayhan, A. (2013). Effect of the moisture content on the physical properties of bitter gourd seed. International Agrophysics 27: 455-461.
  28. Yalçin, I. (2007). Physical properties of cowpea (Vigna sinensis L.) seed. Journal of Food Engineering 79: 57-62.

Editorial Board

View all (0)