- Ahmad, .P, Sharma, S. and Srivastava, P.S. (2007). In vitro selection of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpuri) in response to morphological and biochemical parameters. Hort. Sci. 34: 114-122.
- Aloui, A., Recorbet, G., Gollotte, A., Robert, F., Valot, B., Gianinazzi-Pearson, V., Aschi-Smiti, S. and Dumas-Gaudot, E. (2009). On the mechanisms of cadmium stress alleviation in Medicago truncatula by Arbuscular mycorrhizal symbiosis: A root proteomic study. Proteomics. 9: 420-433.
- Baldet, P., Defraud, C., Chevalier, C., Brouquise, R., Juste, O. and Raymound, P. (2002). Contrasted response to carbohydrate limitation in tomato fruit at two stages of development. Plant Cell and environment. 25: 1639-1649.
- Brouquisse, R., Fisher, C. and Raymond, P. (1997) La protéolyse chez les plantes supérieures: Nature, fonction, et régulation, In: J-F Morot-Gaudy édit. Assimilation de l’azote chez les plantes, Aspects physiologique, biochimique et moléculaire, pp. 327-350.
- Brouquisse, R., Gaudillère, J.P. and Raymond, P. (1998). Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol. 117: 1281-1291.
- Chen, Y.X., He, Y.F., Luo, Y.M., Yu, Y.L., Lin, Q. and Wong, M.H. (2003). Physiological mechanism of plant roots exposed to cadmium. Chemosphere. 50: 789-793.
- Chugh, L.K. and Swahney, S.K. (1999). Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol. Biochem. 37: 297-303.
- Cosio, C., Enrico, M. and Keller, C. (2004). Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiology. 134:716-725.
- Dalcorso, G., Farinati, S. and Furini, A. (2010). Regulatory networks of cadmium stress in plants. Plant Signal Behav. 5: 663-667.
- Das, P., Samantaray, S. and Rout, G.R. (1997). Studies on cadmium toxicity in plants. Environ. Pollut. 98: 29-36.
- Dong, J., Wu, F. and Zhang, G. (2006). Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere. 64: 1659-1666.
- Dražic, G., Mihailovic, N. and Lojic, M. (2006). Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol. Plantarum. 50: 239-244.
- Elloumi, N., Ben Abdallah, F., Rhouma, A., Ben Rwina, B., Mezghani, I. and Boukhris, M. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiologiae Plantarum. 29: 57-62.
- Finger-Teixeira, A., de Lourdes, M.L.F., Ricardo Soares, A., da Silva, D. and Ferrarese-Filho, O. (2010). Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety. 73: 1959–1964.
- Gill,S.S., Hasanuzzaman, M., Nahar, K., Macovei, A. and Tuteja, N. (2013). Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem. 63: 254-261.
- Groppa, M.D., Rosales, E.P., Iannone, M.F. and Benavides, M.P. (2008). Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry. 69: 2609-2615.
- Haag-Kernel, A., Schäfer, H.J., Heist, S. and Rausch, C. 1999). Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. of Experimental Botany. 50: 1827-1835.
- Hall, J.L. (2000). Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1-11.
- Hirschi, K.D. (2004). The calcium conundrum, both versatile nutrient and specific signal. Plant Physiol. 136: 2438-2442.
- Horchani, F., Gallusci, P., Baldet, P., Cabasson, C., Maucourt, M., Rolin, D., Smiti, S. and Raymond, P. (2008). Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits. J. Plant Physiology. 165: 1352-1359.
- Hsu, Y.T. and Kao, C.H. (2003a). Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regal. 40: 147-155.
- Hsu, Y.T. and Kao, C.H. (2003b). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedling. Plant, cell and Environment. 26: 867-874.
- Hsu, Y.T. and Kao, C.H. (2004). Accumulation of ammonium ion in cadmium tolerant and sensitive cultivars of Oryza sativa. Australian society of agronomy, new directions for a diverse planet.
- Khan, M.N., Siddiqui, M.H., Mohammad, F., Naeem, M. and Khan, M.M.A. (2010). Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol. Plant. 32: 121-132.
- Liu, J., Li, K., Xu, J., Liang, J., Lu, X., Yang, J. and Zhu, Q. (2003). Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res. 83: 271-281.
- Mengel, K. (2007). Potassium, In Handbook of Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, pp. 91-120.
- Metwally, A., Safronova, V., Belimov, A.A. and Dietz, K.J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Botany. 56: 167-178.
- Pacifici, R.E. and Davies, K.J.A. (1990). Protein degradation as an index of oxidative stress. Methods Enzymology. 186: 485-502.
- Perfus-Barbeoch, L., Leinhardt, N., Vavasseur, A. and Forestier, C. (2002). Heavy metal Toxicity, Cd permeates through calcium channels and disturbs the plant water status. Plant J. 32: 539-548.
- Rodríguez-Serrano, M., Romero-Puertas, M.C., Pazmiño, D.M., Testillano, P.S., Risueño, M.C., del Río, L.A. and Sandalio, L.M. (2009). Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150: 229-243.
- Romero-Puertas, M.C., Palma, J.M., Gómez, M., Del Rio, L.A. and Sandalio, L.M. (2002). Cadmium causes the oxidative modification of proteins in pea plants. Plant cell Environ. 25: 677-686.
- Rosielle, A.A. and Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 21: 943-946.
- Saglio, P.H. and Pradet, A. (1980). Soluble sugars, respiration and energy charge during ageing of excised maize root tips. Plant Physiol. 66: 516-519.
- Sandalio L.M., Dalurzo H.C., Gómez M., Romero-Puertas M.C. and del Río L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115-2126.
- Schützendübel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Godbold, D.L. and Polle, A. (2001).
- Cadmium–Induced Changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant physiology. 127: 887-898.
- Siddiqui, M.H., Al-Whaibi, M.H. and Basalah, M.O. (2011). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. 248: 503-511.
- Sledge, M.K., Pechter, P. and Payton, M.E. (2005). Aluminum tolerance in Medicago truncatula germplasm. Crop Sci. 45: 2001-2004.
- Somashekaraiah, B.V., Padmaja, K. and Prasad, A.R.K. (2006). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorphyll degradation. Physiologia Plantarum. 85: 85-89.
- Tanaka, A. and Tsuji, H. (1998). Effects of calcium on chlorophyll synthesis and stability in the early phase of greening in cucumber cotyledons. Plant Physiol. 65: 1211-1215.
- Vangronsveld, J. and Clijsters, H. (1994). Toxic effects of metals, In Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity. Ed. M.E. Farago. pp. 149-177.
- Wintermans, J.F.G.A. and de Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochemistry and Biophysics ACTA. 109: 448-453.
- Wójcika, M., Vangronsveld, J. and Tukiendorf, A. (2005). Cadmium tolerance in Thlaspi caerulescens: Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environmental and Experimental Botany. 53: 151-161.
- Woolhouse, H.W. (1983). Toxicity and tolerance in the response of plants to heavy metals. Encycl. Plant Physiol. 12: 246- 300.
- Wu, F., Dong, J., Jia, G.X., Zheng, S.J. and Zhang, G.P. (2006). Genotypic difference in the response of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric. Sci. China. 5: 68-76.
- Wu, F., Zhang, G., Dominy, P., Wu, H. and Bachir, D.M. (2007). Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. Chemosphere. 70: 83–92.
- Xu, J., Wang, W., Yin, H., Liu, X., Sun, H. and Mi, Q. (2010). Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil. 326: 321-330.
- Yuguan, Z., Min, Z., Luyang, L., Zhe, J., Chao, L., Sitao, Y., Yanmei, D. and Fashui, H. (2009). Effects of cerium on key enzymes of carbon assimilation of spinach under magnesium deficiency. Biological Trace Element Research. 131: 154-164.
- Zhang, G., Fukami, M. and Sekimoto, H. (2002). Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res. 77: 93-98.