Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 34 issue 4 (december 2011) : 232 - 241

MORPHO-PHYSIOLOGICAL RESPONSES OF GRASS PEA (LATHYRUS SATIVUS L.) GENOTYPES TO SALT STRESS AT GERMINATION AND SEEDLING STAGES

Dibyendu Talukdar
1R.P. M. College, (University of Calcutta), Uttarpara, Hooghly - 712 258, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Talukdar Dibyendu (2025). MORPHO-PHYSIOLOGICAL RESPONSES OF GRASS PEA (LATHYRUS SATIVUS L.) GENOTYPES TO SALT STRESS AT GERMINATION AND SEEDLING STAGES. Legume Research. 34(4): 232 - 241. doi: .
Response of eight different grass pea (Lathyrus sativus L.) genotypes to salinity (0, 50, 100, 150 and 200 mM NaCl)-induced stress was studied at both germination and seedling growth stages. Among the genotypes, significant decrease in germination, dry weight, K content and accumulation of Na occurred in HL and LSP-1 from 100 mM and in BioR-231, BioR-202 and BioL-203 from 150 mM treatment. In contrast, nearly normal growth and dry weight in ML, B1 and BioL-212 even at 200 mM treatment might be attributed to maintenance  of normal cellular equilibrium of K+/Na+ ratio and leaf photosynthetic pigments at elevated treatment level. This resulted in better tolerance of these three genotypes to high salt stress than the other five genotypes. On the basis of the performance, the treatment of 150 mM NaCl was detected as critical to most of the grass pea genotypes under salt stress.
  1. Ahmad, P., John, R., Sarwar, M. and Umar, S. (2008). Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int. J. Plant Prod., 2: 353-366.
  2. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenyloxidase in Beta vulgaris. Plant Physiol., 24:1–15.
  3. Bates, L. S., Waldren, R. P. and Teary, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
  4. Bayuelo-Jime´ nez, J. S., Debouck, D. G. and Lynch, J. P. (2002). Salinity tolerance in Phaseolus Species during early vegetative growth. Crop Science, 42 : 2184-2192.
  5. Berger, J. D., Siddique, K. H. M. and Loss, S. P. (1999). Cool season grain legumes for Mediterranean environments: The effect of environment on non protein amino acids in Vicia and Lathyrus species. Aust. J. Agric. Res., 50: 403-412.
  6. Biswas, A.K. (2007). Induced mutation in grass pea (Lathyrus sativus L.). In: Underutilised and Neglected Crops, Herbs and Spices, Ochatt, S.J. and Jain S.M., (Eds.). Science Press, Enfield, USA., pp: 29-39.
  7. Chen, C., Tao, C., Peng, H. and Ding, Y. (2007). Genetic analysis of salt stress response in asparagus bean [Vigna unguiculata (L.) ssp. sesquipedalis Verdc.]. Journal of Heredity, 98: 655-665.
  8. Cocks, P., Siddique, K. and Hanbury, C. (2000). Impact of Stress on Neurotoxins. In: Lathyrus: A New Grain Legume, Cocks, P. et al., (Eds.). RIRDC, Australia. pp: 4-15.
  9. Flowers, T.J., (2004).Improving crop salt tolerance. J. Exp. Bot., 55: 307-319.
  10. Flowers, T. J. and Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22: 875-884.
  11. Hossain, Z., Mandal, A.K.A., Dutta, S.K. and. Biswas, A.K (2006). Isolation of a NaCl-tolerant mutant of Chrysanthemum morifolium by gamma radiation: In vitro mutagenesis and selection by salt stress. Functional Plant Biol., 33: 91-101.
  12. Hernández, J.A., Jimenez, A., Mullineaux, P. and Sevilla, F. (2000). Tolerance of pea (Pisum sativum L.) to long-term salt-stress is associated with induction of antioxidant defenses. Plant, Cell and Environment, 23: 853-862.
  13. ISTA, (2008). International Seed Testing Association. ISTA Secretariat, Switzerland.
  14. Kumar, V. and Sharma, D.R. (1989). Isolation and characterization of sodium chloride-resistant callus culture of Vigna radiata (L.) Wilczek var. radiata. J. Exp. Bot., 40: 143-147.
  15. Mahdavi, B. and Sanavy, S.A.M.M. (2007). Germination and seedling growth in grass pea (Lathyrus sativus L.) cultivars under salinity conditions. Pak. J. Biol. Sci., 10: 273-279.
  16. Mukherji, S. and Biswas, A.K. (1979). Modulation of chlorophyll, carotene and xanthophylls formation by penicillin, benzyladenine and embryonic axis in mungbean (Phaseolus aureus L.) cotyledons. Ann. Bot., 43: 225-229.
  17. Munns, R.. (2005). Genes and salt tolerance: bringing them together. New Phytol., 167: 645-663.
  18. Munns, R., James, R. A. and Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot., 57: 1025-1043.
  19. Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y. and Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J., 18: 185-193.
  20. Redmann, R. E. (1974). Osmotic and specific ion effect on the germination of alfalfa. Can. J. Bot. 52: 803-808.
  21. Rengasamy, P. (2006). World salinization with emphasis on Australia. J. Exp. Bot. 57: 1017–1023.
  22. Saha, P., Chatterjee, P. and Biswas, A. K. (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mung bean (Vigna radiate L. Wilczek.). Ind. J. Exp. Biol., 48: 593-600.
  23. Sawahel, W.A. and Hassan, A. H. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotech. Lett., 24: 721-725.
  24. Sharma, R.N. and Pandey, R. L. (2001). Seed and seedling vigour of grasspea (Lathyrus sativus L.) in relation to moisture stress for better performance under relay cropping with paddy rice. Lathyrus Lathyrism Newslett., 2: 99-100..
  25. Stivsev, M.V., Ponnamoreva, S. and Kuznestova, E. A. (1973). Effect of salinization and herbicides on chlorophyllase activity in tomato leaves. Fiziol. Rast., 20: 62-65.
  26. Strogonov, B.P., Kabanov, V.V., Shevjakova, N.I., Lapina, L.P. and Komizerko, E.I., Popov, B.A., Dastanova, R. Kh. and Prykhod’ko, L. S. (1970). Structure and function of plant cell under salinity. Moscow, Nauka, Russia.
  27. Talukdar, D. (2008). Cytogenetic characterization of seven different primary tetrasomics in grass pea (Lathyrus sativus L.). Caryologia 61: 402-410.
  28. Talukdar, D. (2009a). Dwarf mutations in grass pea (Lathyrus sativus L.): Origin, morphology, inheritance and linkage studies. Journal of Genetics 88: 165-175.
  29. Talukdar, D. (2009b). Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.). Afric. J. Agric. Res. 4: 1549-1559.
  30. Talukdar, D. (2010a). Reciprocal translocations in grass pea (Lathyrus sativus L.). Pattern of transmission, detection of multiple interchanges and their independence. Journal of Heredity 101: 169-176.
  31. Talukdar, D. (2010b). Cytogenetic characterization of induced autotetraploids in grass pea (Lathyrus sativus L.). Caryologia, 63: 62-72.
  32. Talukdar, D. (2010c). Fluorescent-banded karyotype analysis and identification of chromosomes in three improved Indian varieties of grass pea (Lathyrus sativus L.) Chromosome Science, 13: 3-10.
  33. Talukdar, D. (2011). Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.). International Journal of Current Research, 2: 46-54.
  34. Talukdar, D. and Biswas, A. K. (2005). Induced seed coat colour mutations and their inheritance in grass pea (Lathyrus sativus L.). Indian J.Genet. 65: 135-136.
  35. Talukdar, D. and Biswas, A.K. (2007). Seven different primary trisomics in grass pea (Lathyrus sativus L.). I Cytogenetic characterization. Cytologia 72: 385-396.
  36. Talukdar, D. and Biswas, A. K. (2008). Variability, heritability and scope of selection for some quantitative traits in induced mutant lines of grass pea (Lathyrus sativus L.). Internat. J. Plant Sci. 3: 528-530.
  37. Turan, M.A., Katkat, V. and Taban, S. (2007). Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress. Journal of Agronomy 6: 137-141.
  38. Vaz Patto, M. C., Skiba, B., Pang, E.C.K., Ochatt, S.J., Lambein, F. and Rubiales, D. (2006). Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica 147: 133-147.
  39. Wang, W., Vinocur, B. and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.
  40. Xiong, Y. C., Xing, G. M., Gong, C. M., Li, F. M., Wang, S. M., Li, Z. X. and Wang, Y. F. (2006). Dual role of Abscisic acid on antioxidative defense in grass pea seedling (Lathyrus sativus L.). Pak. J. Bot. 38: 999-1014.

Editorial Board

View all (0)