Banner

Chief Editor:
J. S. Sandhu
Vice Chancellor, SKN Agriculture, University, Jobner, VC, NDUAT, Faizabad, Deputy Director General (Crop Science), Indian Council of Agricultural Research (ICAR), New Delhi
Frequency:Monthly
Indexing:
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Go...
Legume Research, volume 34 issue 2 (june 2011) : 111 - 116

PINK PIGMENTED FACULTATIVE METHYLOTROPHS INDUCE DIRECT MORPHOGENESIS IN COWPEA [Vigna unguiculata (L.) Walp]

V.I. Soumya, S.P. Sundaram, K.S. Meenakumari*
1Tamil Nadu Agricultural University, Coimbatore - 641 003, India.
  • Submitted|

  • First Online |

  • doi

Cite article:- Soumya V.I., Sundaram S.P., Meenakumari* K.S. (2025). PINK PIGMENTED FACULTATIVE METHYLOTROPHS INDUCE DIRECT MORPHOGENESIS IN COWPEA [Vigna unguiculata (L.) Walp]. Legume Research. 34(2): 111 - 116. doi: .
Fourteen pink pigmented facultative methylotroph (PPFM) isolates inhabiting phyllosphere of different tropical plants were screened for plant growth hormone production and effect on seed germination and seedling growth of cowpea (Vigna unguiculata (L.) Walp). The best isolates were selected for studying their effect on in vitro culture of cowpea. The isolates were found to induce direct morphogenesis of cowpea explants in hormone-free Murashige and Skoog medium. The response of cowpea to in vitro culture varied with the type of explant used. The regeneration percentage was comparatively more in epicotyl than in hypocotyl explants. The population of PPFMs in regenerated plantlets ranged from 10.5 to 18.2 cfu g-1 on fresh weight basis indicating a stable association between the bacteria and the plantlets. There was significant increase in soluble protein and chlorophyll content of the regenerated plantlets over controls.
  1. Basile, D.V. et al.,(1969). Bull Torrey Bot Club. 96: 711-714.
  2. Corpe, W.A. and Basile, D.V. (1982). Dev Indust Microbiol. 23: 483-493.
  3. Devi, P. et al., (2000). Plant Cell Rep.19:546-555.
  4. Doronina, N.V. et al., (2002).Microbiology. 71:116-118.
  5. Holland, M.A. and Polacco, J.C. (1992).: Plant Physiol. 98:942–948.
  6. Ivanova, E.G. et al., (2001). Microbiology. 70:392-397.
  7. Ivanova, E.G. et al., (2000). Microbiology. 69:646-651.
  8. Jain, V.K. et al., (2004). Plant Cell Biotechnology and Molecular Biology. 5: 85-88.
  9. Kalyaeva, M.A. et aI.,(2001). Russ. J. Plant Physiol.48:514-517.
  10. Kalyaeva, M.A. et aI., (2003).Russ. J. Plant Physiol. 50:313-317.
  11. Kartha, K.K. et al., (1981). Canadian J Bot, 59:1672-1674.
  12. Long, R. et al., (1997). Abstract No. 1168 of Am.Soc. Plant Physiol.
  13. Lowry, O.H. et al.,(1951). J. Biol. Chem. 193:265-275.
  14. Ma, Q. et al., (1998). Aust. J. Plant Physiol. 25:53–59.
  15. Murashige, T. and Skoog, F. (1962). Physiol. Plant. 15:473-497.
  16. Omer, Z.S. et al., (2004). Plant Growth Regul. 43:93-96.
  17. Skoog, F. and Miller, C.O. (1957). Soc. Exp. Biol. Symp. 11:118-131.
  18. Trotsenko, Yu.A. et al., (2001). Microbiology.70:623-632.
  19. Van Staden, J. and Davey, J.E. (1979). Plant Cell Environ. 2:93-106.
  20. Whittenbury, R. et al., (1970). J. Gen. Microbiol. 61:205-218.
  21. Yoshida,S. et al., (1971). In: Laboratory Manual for Physiological Studies in rice. IRRI, Philippines.

Editorial Board

View all (0)