Loading...

CHANGES IN THE NODULAR METABOLISM IN DESI AND KABULI GENOTYPES OF CHICKPEA (CICER ARIETINUM L.) UNDER SALT STRESS

Article Id: ARCC3623 | Page : 1 - 10
Citation :- CHANGES IN THE NODULAR METABOLISM IN DESI AND KABULI GENOTYPES OF CHICKPEA (CICER ARIETINUM L.) UNDER SALT STRESS.Legume Research.2006.(29):1 - 10
Neera Garg and Ranju Singla
Address : Department of Botany, Punjab University, Chandigarh - 160 014, India

Abstract

Experiments were conducted to study the nodular metabolism, in order to draw comparisons between nitrogen fixation, carbon fixation and ammonia assimilation in nodule cytosol of desi (CSG 8962, DCP 92-3) and kabuli (CSG 9651, BG 267) genotypes of chickpea. Maximum acetylene reduction activity (ARA) was observed in CSG 9651 and minimum in DCP 92-3.The specific activity of ammonia assimilating enzymes GS, GDH, GOGAT was less affected in the CSG 9651, CSG 8962 as compared to BG 267, DCP 92-3. GS activity was more tolerant of salinity than GOGAT and it limits ammonia assimilation under saline stress. Nodule phosphoenol pyruvate carboxylase (PEPC) activity wasenhanced by salt stress and was clearly related to salt concentration. Chickpea genotypes tolerant to salt stress have better enzyme activities responsible for higher nodule nitrogen fixation.

References

  1. Aquirreolea, J. and Sanchez-Diaz, M. (1989). J. Pl. Physiol., 134: 598-602.
  2. Ashraf, M. and Waheed, A. (1993). Pl. Soil., 154: 257-266.
  3. Christellar, J.T. et al. (1977). Pl. Physiol., 60: 47-50.
  4. Cordovilla, M.P. (1993). Ph.D. Thesis, University of Granada.
  5. Cordovilla, M.P. et al. (1996). J. Expt. Bot., 47: 203-210.
  6. Cordovilla, M.P. et al. (1999). Applied Soil Eco., 11: 1-7.
  7. Delgado, M.J. et al. (1993). Physiol. Plant, 89: 824-829.
  8. Delgado, M.J. et al. (1994). Soil Biol. Biochem., 26: 371-376
  9. Drevon, J.J. et al. (1998). Biological Nitrogen Fixation for the 21st Century. Kluwer Academic Publishers, Dordrecht, 465-66.
  10. Dua, R.P. and Sharma, P.C. (1995). ICPN, 2: 19-22.
  11. Ferri, A. et al. (2000). Pl. Biol., 2: 396-402.
  12. Goula, H. et al. (1994). Pl. Physiol., 105: 1409-18.
  13. Groat, R.G. and Vance, C.P. (1981). Pl. Physiol., 67: 1198-1203.
  14. Guerrier, G. (1988). Seed Sci. Tech., 16: 571-8.
  15. Hartree, E.F. (1957). Modern Methods of Plant Analysis. (Paech, K. and Tracey, M.V. eds.) (Springer-Verlag) pp. 197-245.
  16. Herdina and Silsbury, J.H. (1990). Aust. J. Pl. Physiol., 17: 489-502.
  17. Kar, M.; Mythili, J.B. and Nair, T.V.R. (1990). J. Nuclear Agric. Biol., 19: 257-260.
  18. Khan, M.G. (1996). Indian J. Pl. Physiol., 1(2): 128-129.
  19. Vol. 29, No. 1, 2006 9 Ligero, F. et al. (1986). J. Pl. Physiol., 125: 361-365.
  20. Maruyama, H.I. et al. (1986). J. Biochem., 241: 2405-2412.
  21. Nair, T.V.R. and Abrol, Y.P. (1977). Crop Sci., 438-442.
  22. Pahlich, E. and Joy, K.W. (1971). Can. J. Biochem., 49: 127-138.
  23. Polhill, R.M. (1994). In: Phytochemical Dictionary of Leguminosae, XXXV-XXVIII. Chapman and Hall, New York, NY.
  24. Rao. D.L.N. et al. (2002). Annals Bot., 89: 563-570.
  25. Rowe, W.B. et al. (1970). In: Methods in Enzymol. Vol 17 Part A (Tabor, H. and Tabor, W. eds.). pp. 850.
  26. Serraj, R. et al. (2001). Agronomie, 21: 645-51.
  27. Serraj, R. et al. (1998). J. Plant Nutr., 21: 475-488.
  28. Solomonson, L.P. and Barber, M.J. (1990). Annu. Rev. Pl. Physiol. Pl. Mol. Biol., 41: 225-53.
  29. Soussi, M. et al. (1998). J. Expt. Bot., 49(325): 1329-37.
  30. Soussi, M. et al. (1999). J. Expt. Bot., 50(340): 1701-08.
  31. Tempest, D.W. et al. (1970). Biochem. J., 117: 405-07.

Global Footprints