CRUDE PROTEIN AND NITROGEN-FREE CONTENT DIVERSITY AND ACCELERATING POTENTIAL IN SEEDS OF ECONOMIC LEGUMES

Article Id: ARCC225 | Page : 165-173
Citation :- CRUDE PROTEIN AND NITROGEN-FREE CONTENT DIVERSITY AND ACCELERATING POTENTIAL IN SEEDS OF ECONOMIC LEGUMES.Legume Research-An International Journal.2013.(36):165-173
T. Aniszewski*, T.A. Ylinampa, J.A. Haikonen and A.S. Pynttäri tadeusz.aniszewski@uef.fi
Address : Research and Teaching Laboratory of Applied Botany, Biological Interactions and Ecological Engineering, Department of Biology, University of Eastern Finland, Joensuu Campus, P. O.Box 111, 80101 Joensuu, Finland

Abstract

31 economic legume species were studied in follow-up research. The material consisted of long-term laboratory data gathered locally, and together with a wide overview of the literature on these species (250 articles). Laboratory experiments and analysis of data reported in the global literature show the standard crude protein content and non-nitrogen content of legume species. Overall, crude protein content ranged from 18mg 100mg-1 dm to over 40mg 100mg-1 dm among the legumes studied. The highly bred species Glycine max, Lupinus albus, Lupinus luteus and Lupinus mutabilis formed a distinct group with a mean of over 30mg crude protein in 100mg dm of seed. A less well-known legume, Psophocarpus tetragonolobus, also had high seed crude protein content. The nitrogen-free proportion of seeds is dependent on crude protein content and these values thus correlate negatively. They can be used as indicators of the seed quality and seed breeding potential of economic legumes.

Keywords

Applied botany Food legumes Non-nitrogen content Seed quality.

References

  1. AACC on line. (2012) International Method 46-18.01 and 46-19.01. American Association of Cereal Chemists International, USA.
  2. Ainsworth, E.A., Yendrek, C.R., Skoneczka, J.A. and Long, S.P. (2012) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ. 35:38-52.
  3. Amonsou, E.O., Taylor, J.R.N., Beukes, M. and Minnaar, A. (2012) Composition of marama bean protein. Food Chem.130:638-643.
  4. Aniszewski, T. (1993) Nutritive quality of alkaloid-poor Washington lupine (Lupinus polyphyllus Lindl.) as a potential protein crop. J. Sci. Food Agric. 61:409-421.
  5. Aniszewski, T. (1995) Interaction between legume and soil. Sci. Leg. 2:179-189.
  6. Aniszewski, T. (2004) Legume species that have breeding potential for NE Europe. Sci. Leg. 6:256-265.
  7. Aniszewski, T., Ciesiolka, D. and Gulewicz, K. (2001) Equilibrium between basic nitrogen compounds in lupin seeds with differentiated alkaloid content. Phytochem. 57(:43-50.
  8. Benton, J.J. (1991) Kjeldahl method for nitrogen determination. Micro-Macro Pub., Athens, GA, USA.
  9. Boye, J.I. and Maltais, A. (2011) Pulses: A novel protein source. Agro. Food Ind. Hi-Tech 22: 24-26.
  10. Calbrix, R.G., Beilinson, V., Stalker, H.T. and Nielsen, N.C. (2012) Diversity of seed storage proteins of Arachis hypogaea and related species. Crop Sci. 52:1676-1688.
  11. Carvalho, A.F.U., de Sousa, N.M., Farias, D.F., da Rocha-Bezerra, L.C.B., da Silva, R.M.P., Viana, M.P., Gouveia, S.T., Sampaio, S.S., de Sousa, M.B., de Lima, G.P.G., de Morais, S.M., Barros, C.C. and Freire, F.R. (2012)Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Comp. Anal. 26: 81-88.
  12. Ciesiolka, D., Aniszewski, T., Wysocki, W., Pilarski, R. and Gulewicz, K. (2008) Evaluation of the effect of various nitrogen forms on the Lupinus albus protein composition. Acta Soc. Botanic. Poloniae 77:93-98.
  13. Criscuolo, G., Valkov, V.T., Parlati, A., Alves, L.M. and Chiurazzi, M.(2012) Molecular characterization of the Lotus japonicus NRT1(PTR) and NRT2 families. Plant Cell Environ. 35:1567-1581.
  14. Dove, E.R., Mori, T.A., Chew, G.T., Barden, A.E., Woodman, R.J., Puddey, I.B., Sipsas, S. and Hodgson, J.M. (2011) Lupin and soya reduce glycaemia acutely in type 2 diabetes. Brit. J. Nutr. 106(7):1045-1051.
  15. Durantti, M. and Morazzoni, P. (2011) Nutraceutical properties of lupin seed proteins. A great potential still waiting for full exploitation. Agro. Food Ind. Hi-Tech 22(1): 20-23
  16. Eklund, M., Caine, W.R., Sauer, W.C., Huang, G.S., Diebold, G., Schollelberger, M. and Mosenthin, R. (2012) True and standardized ileal digestibilities and specific ileal endogenous recoveries of crude protein and amino acid in soybean meal, rapeseed meal and peas fed to growing pigs. Livestock Sci. 145(1-3):174-182.
  17. Fan, L.P., Ding, S.D., Liu Y.F. and Ai, L.Z. (2012) Dehydration of crude protein from Ginkgo biloba L. by microwave freeze drying. Inter. J. Biol. Macromol. 50:1008-1010.
  18. Foley, R.C., Gao, L.L., Spriggs, A., Soo, L.Y.C., Goggin, D.E., Smith, P.M.C., Atkins, C.A. and Singh, K.B. (2011) Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol. 11(59):2229.
  19. ISP on line. (2012) A guide to Kjeldahl nitrogen determination methods and apparatus. An Industry Service Public. TX, USA, 11 pp.
  20. Kim, J., Lee, Y. and Lee, S.Y. (2011) Legumes and soy products consumption and functional disability in older women. Maturitas 69(3)268-272.
  21. Kimura, A., Fukuda, T., Zhang, M., Motoyama, S., Maruyama, N. and Utsumi, S. (2008) Comparison of physicochemical properties of 7S and 11S globulins from pea, fava bean, cowpea, and french bean with those of soybean-french bean 7S globulin exhibits excellent properties. J. Agric. Food Chem. 56:10273- 10279.
  22. Kumar, J., Pratap, A., Solanki, R.K., Gupta, D.S., Goyal, A., Chaturvedi, S.K., Nadarajan, N. and Kumar, S.W. (2012) Genomic resources for improving food legume crops. J. Agric. Sci. 150:289-318.
  23. Lopez-Guel, E.C., Lozano-Bautista, F., Mora-Escobedo, R., Farrera-Rebollo, R.R., Chanona-Perez, J., Gutierrez- Lopez, G.F. and Calderon-Dominguez, G. (2012) Effect of Soybean 7S protein fractions, obtained from germinated and nongerminated seeds, on dough rheological properties and bread quality. Food Bioproc. Tech. 5(1):226-234.
  24. Lovati, M. R., Manzoni, C., Castiglioni, S., Parolari, A., Magni, C. and Durantti, M. (2012) Lupin seed gamma- conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Brit. J. Nutr. 107(1):67-73.
  25. Marathe, S.A., Rajalakshmi, V., Jamdar, S.N. and Sharma, A. (2011) Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxicol. 49: 2005-2012.
  26. Mession, J.L., Assifaoui, A., Cayot, P. and Saurel, R. (2012) Effect of pea proteins extraction and vicilin/legumin fractionation on the phase behaviour in admixture with alginate. Food Hydrocoll. 29:335-346.
  27. Park, S.J., Kim, T.W. and Baik, B.K. (2010) Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L.) J. Sci. Food Agric. 90:1719-1725.
  28. Schumacher, H., Paulsen, H.M., Gau, A.E., Link, W., Jurgens, H.U., Sass, O. and Dieterich, R. (2011) Seed protein amino acid composition of important local grain legumes Lupinus angustifolious L., Lupinus luteus L., Pisum sativum L. and Vicia faba L. Plant Breed. 130:156-164.
  29. Siddique, K.H.M., Johansen, C., Turnner, N.C., Jeuffroy, M.H., Hashem, A., Sakar, D., Gan, Y.T. and Alghamdi, S.S. (2012) Innovations in agronomy for food legumes. A review. Agron. Sust. Develop. 32:45-64.
  30. Upadhyaya, H.D., Dwivedi, S.I., Ambrose, M., Ellis, N., Berger, J., Smykal, P., Debouck, D., Duc, G., Dumet, D., Flavell, A., Sharma, S.K., Mallikarjuna, N. and Gowda, C.L.L. (2011) Legume genetic resources: management, diversity assessment, and utilization in crop improvement. Euphytica 180(1):27-47
  31. Wolp, R.C., Rodrigues, N.E.B., Zangeromino, M.G., Cantarelli, V.S., Fialho, E.T., Philomeno, R., Alvarenga, R.R. and Rocha, L.F. (2012) Soybean oil and crude protein levels for growing pigs kept under heat stress conditions. Livestock Sci. 147(1-3):148-153.
  32. Xie, Z.Y., Neigel, J. and Chlan, C. (2012) Vicilin genes of Vigna luteola: Structure, organization, expression and variation. Biochem. Genet. 50(5-6):372-388.

Global Footprints