Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 32 issue 1 (march 2009) : 41-45

INDUCED CHLOROPHYLL AND MORPHOLOGICAL MUTATIONS IN MUNGBEAN (VIGNA RADIATA L. WILCZEK)

Anand Kumar, Parmanand Parmhansh, Rajendra Prasad
1Department of Plant Breeding and Genetics, Rajendra Agricultural University, Pusa (Samastipur)-848 125, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Kumar Anand, Parmhansh Parmanand, Prasad Rajendra (2024). INDUCED CHLOROPHYLL AND MORPHOLOGICAL MUTATIONS IN MUNGBEAN (VIGNA RADIATA L. WILCZEK). Legume Research. 32(1): 41-45. doi: .
Seeds (9% moisture content) of two mungbean varieties PS 16 and Sona were exposed to six
doses (10 to 60 KR) of gamma rays or treated with four concentration of ethyl methanesulphonate
(0.1 to 0.4%) alone or in various combination. A wide range of chlorophyll and morphological
mutants was observed in the M2. The range was greater with EMS than with gamma rays or combined treatments. The spectrum of chlorophyll mutations consisted of albina, chlorina, viridis and xantha. Of these chlorophyll mutations, xantha type was predominant in both the mutagenic treatments. Thespectrum and frequency of chlorophyll mutations increased with increase in doses or concentration of the mutagens. EMS produced the highest frequency of mutations followed by gamma rays or their combinations. The different types of morphological mutants were induced. The chlorophyll deficient and flower colour mutations are of hardly any economic importance, but the compact, dwarf, early, large pod size and synchronous maturity mutants are agronomically desirable which may be utilizedin future breeding programme
  1. Gaul, H. (1964). Rad. Bot., 4:155-232.
  2. Gottschalf, W. (1969). Nucleus, 13:1-9.
  3. Goud, J.V. (1967). Rad. Bot., 7:321-331.
  4. Gustafsson, A. (1947). Hereditas, 33:1-100.
  5. Ignacimuthu, S. and Babu, C.R. (1988). Indian J. Genet. 48(3):331-342.
  6. Khan, S.H. and Siddiqui, B.A. (1993). Pakistan J. Bot. 25(2):161-166.
  7. Mallick, G. K. et al. (1999). Environ. Ecol. 17(1):143-145.
  8. Natrajan, A.T. and Upadhyay, M.D. (1964). Chromosome (Berl.) 15:156-187.
  9. Nilan, R.A. et al. (1968). In : Mutation in Plant Breeding, I. Proc. Panel Vienna, 1967; IAEA, Vienna, 1968, pp. 193-202.
  10. Pande, K. and Raghuvanshi, S.S. (1988). Mutation Breed Newslett., 32:6-7.
  11. Singh, Gajraj et al. (2000). Indian J. Genet. 60(3):391-393.
  12. Singh, V.P. and Yadav, R.D.S. (1991). J. Genet. Breed., 45(1):1-5.
  13. Singh, V.P. et al. (1987). Abstract : First Symposium on Crop Improvement, 23-27 February, 1987, India.
  14. Smith, H.H. (1961). Mutation and Plant Breeding. Publ. No. 891 NAS-IVRC Washington, D.C., pp. 413-436.
  15. Westergaard, M. (1960). A Discussion of Mutagen specificity, chemische mutagens. Erwin-Bauer-Gadachtnis Volesungen, I, Academic-Verlay Berlin, pp. 116-121.

Editorial Board

View all (0)