Article Id: ARCC200 | Page : 15-20
Vinod Saharan*, Vikas Meena, H.K. Jain and Ram C. Yadav1 vinodsaharan@gmail.com
Address : Department of Molecular Biology and Biotechnology, M.P. University of Agriculture & Technology, Udaipur-313 001, India


High frequency stable GUS gene expression has been achieved in three chickpea varieties. Standardized regeneration protocol from epicotyl explant has been used for regeneration of transformed GUS expressing shoots of chickpea. Agrobacterium tumefaciens strain EHA 105 containing vector pCAMBIA 2301 and strain LB 4404 harboring pBI121 were used in present study. Infection time (15 min.), co-cultivation duration (72 hrs.), acetosyringone (200 µM) were found to be optimum for transient and stable GUS gene expression via pCAMBIA vector. Maximum percentage of stable GUS gene expression was recorded 33.3 %  in microshoots of Pratap-1, followed by 19.0 % in microshoots of GNG-469. Efforts have been made to perform PCR for regenerated microshoots to confirmed stable GUS and npt-II gene integration in transformed microshoots. Present protocols developed for popular local varieties of chickpea can be used for transfers of genes for varietal improvement programme.


Agrobacterium tumefaciens Epicotyl explants GUS gene.


  1. Akbulut M., Yucel M. and Oktem H.A. (2008). Analysis and organization of DNA delivery into chickpea (Cicer arietinum L.) seedlings by Agrobacterium tumefaciens. Afri. J. Biotechnol., 7: 1011-1017.
  2. Bhattacharjee B., Mohan M. and Nair S. (2010). Transformation of chickpea: effect of genotype, explant, Agrobacterium- strain and composition of culture medium. Biol. Plant., 54 (1): 21-32.
  3. Fontana G.S., Santini L., Caretto S., Frugis G. and Mariotti D. (1993). Genetic transformation in the grain legume Cicer arietinum L. (Chickpea). Plant Cell Rep., 12: 194-198.
  4. Geervani P. and Umadevi T. (1989). Effect of maturation of nutrient composition of selected vegetable legumes. J. Sci. Food Agri., 46: 243-248.
  5. Ignacimuthu S and Prakash S. (2006). Agrobacterium-mediated transformation of chickpea with á-amylase inhibitor gene for insect resistance. J. Biosci., 31: 339-345.
  6. Indukar I., Hari M. and Susan E. (2007). Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep., 26: 755-763.
  7. Jayanand B., Sudarsanam G. and Sharma K.K. (2003). An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell. Develop. Biol. Plant, 39: 171-179.
  8. Jefferson R.A., Kavanagh T.A. and Bevan M.W. (1987). GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO J., 6: 3901-3907.
  9. Kar S., Johnson T.M., Nayak P. and Sen S.K. (1996). Efficient transgenic plant regeneration through Agrobacterium- mediated transformation of chickpea (Cicer arietinum L.). Plant Cell Rep., 16 (1-2): 32-37.
  10. Khawar K.M. and Ozcan S. (2004). Hairy root transformation in Turkish chickpea (Cicer arietinum L.) cultivars. Biotechnol. Biotechnol. Equip., 18 (3): 51-54.
  11. Krishnamurthy K.V., Suhasini K., Sagare A.P., Meixner M., De-Kathen A., Pickardt T. and Schieder D. (2000). Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep., 19 (3): 235-240.
  12. Kumar P.A., Bisaria S., Pai R.A. and Sharma R.P. (1995). Comparative shoot regeneration in different genotypes of chickpea (Cicer arietinum L.). Indian J. Exp. Biol., 33 (1): 77-78.
  13. Pathak M.R. and Hamzah R.Y. (2008). An effective method of sonicated-assisted Agrobacterium-mediated transformation of chickpea. Plant Cell Tiss. Org. Cult., 93: 65-71.
  14. Polowick P.L., Baliski D.S. and Mahon J.D. (2004). Agrobacterium tumefaciens mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. Plant Cell Rep. 23: 435-491.
  15. Saharan V., Patel B., Shah M.A., Ranwah B.R., Chabra K. and Shrimali D. (2011). Adventitious plant regeneration and transient GUS-gene expression in Jatropha curcas (L.). J. Cell Tiss. Res., 11: 2803-2808.
  16. Saharan V., Yadav R.C., Yadav N.R. and Khusi Ram (2004). Studies on improved Agrobacterium-mediated transformation in two indica rice (Oryza Sativa L.). Afr. J. Biotechnol., 3: 572-575.
  17. Sanyal I., Singh A.K., Kaushik M. and Amla D.V. (2005). Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci., 168: 1135-1146.
  18. Sarmah B.K., Moore A., Tate W., Molvig L., Morton R.L., Rus D.P., Chiaiese P., Maarten J.C., Tabe L.M. and Higgins T.J.V. (2004). Transgenic chickpea seeds expressing high levels of a bean á-amylase inhibitor. Mol. Breed., 14:73-82.
  19. Senthil G., Williamson B., Dinkins R.D. and Ramsay, G. (2004). An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep., 23 (5): 297-303.
  20. Singh K., Tewari N., Sen J., Kiesecker H., Reddy V. S., Jacobsen H. J. and Guha-Mukherjee S. (2004). Use of herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Rep. 22: 576-583.
  21. Singh V., Verma P.C., and Achorya V.S. (2006). Evaluation of difference IPM modules against Helicoverpa armigera Hubner infesting chickpea. Indian J. Pulses Res., 19 (1): 98-100.
  22. Soni G.L., George M. and Singh, R. (1982). Role of common Indian pulses as hypocholesterolemic agents. Indian J. Nutr. Diebet, 19: 184–189.

Global Footprints