Establishment of a DNA Barcoding Database for Legume and Grass Species Identification

DOI: 10.18805/AF-727    | Article Id: AF-727 | Page : 659-668
Citation :- Establishment of a DNA Barcoding Database for Legume and Grass Species Identification.Legume Research.2022.(45):659-668
Yongqing Li, Zunongjiang A. Bu La, Lijun Cao, Shengguo Zhao m18894036031@163.com
Address : Animal Husbandry Quality Standards Institute, Xinjiang Academy of Animal Sciences, Urumqi, China.
Submitted Date : 12-02-2022
Accepted Date : 3-03-2022


Background: DNA barcoding, an emerging approach, is being widely used to accurately and quickly identify species using conserved DNA sequences. 
Methods: Herein we designed seven universal primers for matK (matK1, matK2, matK3 and matK4), rbcL, psbA-trnH and ITS based on their nucleotide sequences in GenBank to amplify 40 species of leguminosae and grass forages. Sequence alignment was performed using MEGA 5.0 and haplotype and mutation sites were analyzed with DnaSP 5.10. PCR amplification efficiency on using the primers designed for psbA-trnH and ITS was relatively low, making these sequences unsuitable for DNA barcoding. Further, we optimized target fragment amplification conditions for all 40 species analyzed in this study. On purifying, sequencing and analysing amplification products, we selected 5′ - and 3′ -end conserved fragments in four marked fragments. 
Result: Sequences of each maker loci showed that there were 12, 17 and 6 haplotypes of matK1, matK2 and matK3, respectively and 13 of rbcL. Based on these haplotypes of matK1, matK2, matK3 and rbcL, we established a DNA barcoding database for 20 forage species.


DNA barcoding Forages MatK RbcL Universal sequences


  1. Cai, Y.M., Dai, J.P., Zheng Y.X., Ren, Y.Y., Chen, H.M., Feng, T.T., Gao, X.X., Zhu, S. (2021). Screening of DNA barcoding sequences for molecular identification of Genus Uncaria. Chinese Traditional and Herbal Drugs. 1-10.
  2. CBOL Plant Working Group. (2009). A DNA barcode for land plants. PNAS. 106(31): 12794-12797.
  3. Chase, M.W., Cowan, R.S., Hollingsworth, P.M., Cassio, V.D.B., Madrinan, S., Petersen, G., Seberg, O., Jorgsensen, T., Cameron, K.M., Carine, M. (2007). A proposal for a standardised protocol to barcode all land plants. Taxon. 56: 295-299.
  4. China Plant BOL Group. (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be in­corporated into the core barcode for seed plants. PNAS. 108: 19641-19646.
  5. Collins, R.A. and Cruickshank, R.H. (2013). The seven deadly sins of DNA barcoding. Molecular Ecology Resources. 13(6): 969-975.
  6. Costion, C.M., Edwards, W., Ford, A.J., Metcalfe, D.J., Cross, H.B., Harrington, M.G., Richardson, J.E., Hilbert, D.W., Lowe, A.J., Crayn, D.M. (2015). Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Di­versity and Distributions. 21: 279-289.
  7. Dang, T.L., Hoang, T.K.H., Le, L.T.T., Nguyen, T.Q.T. (2021). Evaluation of Genetic Diversity by DNA Barcoding of Local Lotus Populations from Thua Thien Hue Province. Indian Journal of Agricultural Research. 55(2): 121-128.
  8. Drumwright, A.M., Allen, B.W., Huff, K.A., et al. (2014). Survey and DNA Barcoding of Poaceae in Flat Rock Cedar Glades and Barrens State Natural Area, Murfreesboro, Tennessee. Castanea. 76(3): 300-310.
  9. Erma, N., Nindi, A., Syamsuardi, Nurainas, Fitmawati, Friardi. (2020). Clarification of Sumatran Mulberry (Morus macroura var. macroura, Moraceae) from West Sumatra, Indonesia using Nucleus Ribosomal ITS (Internal Transcribed Spacer) Gene. Indian Journal of Agricultural Research. 54(5): 635-640.
  10. Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Graham, S.W., Newmaster, S.G., Husband, B.C., Perey, D.M., Hajibabaei, Barrett, S.C.H. (2008). Multiple multiloeus DNA barcodes from the plastid genome discriminate plants species equally well. PloS One. 3: e2802.
  11. Fu, Y.M., Jiang, W.M., Fu, C.X. (2011). Identification of species within Tetrastigma (Miq.) Planch (Vitaceae) based on DNA barcoding techniques. Journal of Systematics and Evolution. 49(3): 237-245.
  12. Hebert, P.D.N, Cywinska, A., Ball, S.L., de Waard, J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences. 270: 313-321.
  13. Hollingsworth, M.L. andra, C.A., Forrest, L.L. (2009). Selecting barcoding loci for plants: Evaluation of seven candidate loci with species-level sampling in three divegent groups of land plants. Molecular Ecology Resources. 9: 439-457.
  14. Hollingsworth, P.M., Graham, S.W., Little, D.P. (2011). Choosing and using a plant DNA barcode. PloS One. 6: el9254.
  15. Kress, W.J., Eriekson, D.L. (2007). A two locus global DNA barcode form land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS One. 2: e508.
  16. Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A., Janzen, D.H. (2005). Use of DNA barcodes to identify flowering plants. PNAS. 102: 8369-8374.
  17. Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T.G., Vincent, S. (2008). DNA barcoding the floras of biodiversity hot-spots. PNAS. 105: 2923-2928.
  18. Li, Y., Wu, S.M., Chen, Q. (2014). Establishment of DNA barcode of common species of Lolium. Plant Quarantine. 28(6): 376-385. 
  19. Liu, G.S. (2003). Advances of molecular biology and biotechnology used in gramineal forage species. Acta Botanica Boreali- Occidentalia Sinica. 23(4): 682-687.
  20. Luo, K. (2010). Assessment for universal plant DNA barcodes based on species of rutaceae and araceae family. PhD Thesis. Wuhan: Hubei University of Traditional Chinese Medicine. (in Chinese).
  21. Meyer, C.P., Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PloS Biology. 3(12): 2229- 2238.
  22. Moritz, C., Cicero, C. (2004). DNA barcoding: Promise and pitfalls. Plos Biology. 2(10): e354.
  23. Newmaster, S.G., Fazekas, A.J., Ragupathy, S. (2006). DNA barcoding in land plants: Evaluation of rbcL in a multi genetiered approach. Canadian Journal of Botany. 84: 335-341.
  24. Newmaster, S.G., Fazekas, A.J., Sleeves, R.A.D., Janovec, J. (2008). Testing candidate plant barcode regions in the Myristica ceae. Molecular Ecology Resources. 8: 480-490.
  25. Pang, X.H., Liu, C., Shi, L.C., Liu, R., Liang, D., Li, H., Cherny, S.S., Chen, S.L. (2012). Utility of the trnH-psbA intergenic spacer region and ITS combinations as plant DNA barcodes: A meta analysis. PloS One. 7: e48833.
  26. Percy, D.M., Argus, G.W., Cronk, Q.C., et al. (2014). Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep?  Molecular Ecology. 23(19): 4737-4756.
  27. Rashmi, K.V., Sathyanarayana, N., Vidya, S.M. (2020). Variations in the trnHpsbA region of Mucuna pruriens L. (DC.) varieties of India: An insight on intraspecific diversity. Indian Journal of Agricultural Research. 53(3): 284-290.
  28. Sass, C., Little, D.P., Stevenson, D.W., Specht, C.D. (2007). DNA barcoding in thecycadales: Testing the potential of proposed barcoding markers for species identification of cycads. PloS One. 2: el 154.
  29. Selvaraj, D., Sarma, R.K., Sathishkumar, R. (2008). Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation. 3(1): 24-27.
  30. Taberlet, P., Coissac, E., Pompanon, F. (2007). Power and limitations of the chlorop last trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3): el4.
  31. Vilaça, S.T., Lacerda, D.R., Sari, E.H.R., et al. (2013). DNA-based identification applied to Thamnophilidae (Passeriformes) species: The first barcodes of Neotropical birds. Revista Brasileira De Ornitologia. 14(1): 7-14. 
  32. Wan, J.J., Yu, L., Lu, W.H., Yang, G.L., Zhang, Q.B., Yang, J.B. (2014). Comprehensive evaluation of nutritive value of dominant gramineous grass in Shaertao Mountain, Zhaosu County in Xinjiang. Pratacultural Science. 31(11): 2141-2147. 
  33. Wang, X.Y., Chen, X.C., Liao, B.S., Wang, L.L., Han, J.P. (2014). Identification of Amomi Fructus Rotundus based on DNA barcod­ing. Abstract of papers on the 14th National Symposium on Traditional Chinese Medicine and Natural Medicine. BeiJing: Chinese Pharmaceutical Association, 17.
  34. Will, K.W., Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics-the International Journal of the Willi Hennig Society. 20(1): 47-55.
  35. Yao, H., Song, J.Y., Liu, C., Luo, K., Han, J. P., Li, Y., Pang, X.H., Xu, H.X., Zhu, Y.J., Xiao, P.G., Chen, S.L. (2010). Use of ITS2 region as the uni­versal DNA barcode for plants and animals. PLoS One. 5: el3102.

Global Footprints