Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.43

  • SJR .263

  • Impact Factor .427 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 56 issue 1 (january 2022) : 15-23

Analysis of Rumen Microbial Protein Abundance of Gayals based on Metaproteomics

Yu Ye, Zi Yujie, Gao Huan, Fu Binlong, Leng Jing
1Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
Cite article:- Ye Yu, Yujie Zi, Huan Gao, Binlong Fu, Jing Leng (2022). Analysis of Rumen Microbial Protein Abundance of Gayals based on Metaproteomics. Indian Journal of Animal Research. 56(1): 15-23. doi: 10.18805/IJAR.BF-1412.
Background: Presently, our understanding of the rumen of Gayals is still very shallow, which is recognized as the most effective and developed fiber degradation system in nature, with abundant microorganisms. Molecular biology technology is an effective means to study the microbial resources in the rumen. 
Methods: Rumen contents of 3 Gayals (Gayals, Bos frontalis; G) and 3 Yellow Cattle (Yunnan Yellow Cattle, Bos taurus; Y) were collected in this study. Rumen microbial proteins were extracted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), then to analyze the bioinformatics of protein abundance was performed through the bovine rumen transcriptome database (gene.uniGeneset.fasta). 
Result: The results were as follows: the differences in protein abundance of Gayals rumen bacteria in Firmicutes, Actinobacteria, Ruminococcus and Olsenella were significantly higher than Yellow cattle (P<0.05) and the difference in protein abundance of Chytridiomycota and Batrachochytrium in rumen fungus of Gayals was significantly less than that of Yellow cattle. Enrichment analysis by KEGG metabolism pathway of differentially expressed proteins in rumen microorganisms was performed, Gayals have higher abundance of β-glucosidase and 6-phosphate-β-glucosidase than Yellow Cattle.

  1. Akin, D.E. and Borneman, W.S. (1990). Role of rumen fungi in fiber degradation. Journal of Dairy Science. 73: 3023-3032.

  2. Puniya, A.K., Singh, R. and Kamra, D.N. (2015). Rumen Microbiology: From Evolution to Revolution(1st Edn). Berlin: Springer (India) private limited, New Delhi.

  3. Bao, Z., Okubo, T., Kubota, K., Kasahara, Y., Tsurumaru, H. anda, M., Ikeda, S. and Minamisawa, K. (2014). Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Applied and Environmental Microbiology. 80: 5043-5052. 

  4. Belstrøm, D., Jersie-Christensen, R.R., Lyon, D., Damgaard, C., Jensen, L.J., Holmstrup, P. and Olsen, J.V. (2016). Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. Peer J. 4: e2433. 

  5. Desai, S.K., Nandimath, K. and Mahadevan, S. (2010). Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Archives of Microbiology. 192: 821-833. 

  6. Erickson, A.R., Cantarel, B.L., Lamendella, R., Darzi, Y., Mongodin, E.F., Pan, C., Shah, M., Halfvarson, J., Tysk, C., Henrissat, B., Raes, J., Verberkmoes, N.C., Fraser, C.M., Hettich, R.L. and Jansson, J.K. (2012). Integrated metagenomics/ metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PloS one. 7: e49138. 

  7. Hamann, E., Gruber-Vodicka, H., Kleiner, M., Tegetmeyer, H.E., Riedel, D., Littmann, S., Chen, J., Milucka, J., Viehweger, B., Becker, K. W., Dong, X., Stairs, C. W., Hinrichs, K. U., Brown, M. W., Roger, A. J. and Strous, M. (2016). Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature. 534: 254-258. 

  8. Hanson, B.T., Hewson, I. and Madsen, E.L. (2014). Metaproteomic survey of six aquatic habitats: Discovering the identities of microbial populations active in biogeochemical cycling. Microbial Ecology. 67: 520-39.

  9. Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators. and Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports. 5: 14567.

  10. Kleiner, M., Thorson, E., Sharp, C.E., Dong, X., Liu, D., Li, C. and Strous, M. (2017). Assessing species biomass contributions in microbial communities via metaproteomics. Nature Communications. 8: 1558. 

  11. Kleiner, M., Wentrup, C., Lott, C., Teeling, H., Wetzel, S., Young, J., Chang, Y.J., et al. (2012). Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proceedings of the National Academy of Sciences of the United States of America. 109: E1173–E1182. 

  12. Krause, D.O., Denman, S.E., Mackie, R.I., Morrison, M., Rae, A.L., Attwood, G.T. and McSweeney, C.S. (2003). Opportunities to improve fiber degradation in the rumen: microbiology, ecology and genomics. FEMS Microbiology Reviews. 27: 663-693. 

  13. Leng, J., Xie, L., Zhu, R., Yang, S., Gou, X., Li, S. and Mao, H. (2011). Dominant bacterial communities in the rumen of Gayals (Bos frontalis), Yaks (Bos grunniens) and Yunnan Yellow Cattle (Bos taurs) revealed by denaturing gradient gel electrophoresis. Molecular Biology Reports. 38: 4863- 4872. 

  14. Matsui, H., Ogata, K., Tajima, K., Nakamura, M., Nagamine, T., Aminov, R.I. and Benno, Y. (2000). Phenotypic characterization of polysaccharidases produced by four Prevotella type strains. Current Microbiology. 41: 45-49.

  15. Mayers, M.D., Moon, C., Stupp, G.S., Su, A.I. and Wolan, D.W. (2017). Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease. Journal of Proteome Research. 16: 1014-1026. 

  16. Oba, M. and Allen, M.S. (2003). Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. Journal of Dairy Science. 86: 2922-2931. 

  17. Peters, D.L., Wang, W., Zhang, X., Ning, Z., Mayne, J. and Figeys, D. (2019). Metaproteomic and metabolomic approaches for characterizing the gut microbiome. Proteomics. 19: e1800363. 

  18. Rabe, A., Gesell Salazar, M., Michalik, S., Fuchs, S., Welk, A., Kocher, T. and Völker, U. (2019). Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. Journal of Oral Microbiology. 11: 1654786. 

  19. Sakata, T. and Tamate, H. (1978). Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate. Journal of Dairy Science. 61: 1109-1113. 

  20. Shigeno, Y., Kitahara, M., Shime, M. and Benno, Y. (2019). Phascolarcto bacterium wakonense sp. nov., isolated from common marmoset (Callithrix jacchus) faeces. International Journal of Systematic and Evolutionary Microbiology. 69: 1941-1946.

  21. Snelling, T.J. and Wallace, R.J. (2017). The rumen microbial metaproteome as revealed by SDS-PAGE. BMC Microbiology. 17: 9. 

  22. Söllinger, A., Tveit, A.T., Poulsen, M., Noel, S.J., Bengtsson, M., Bernhardt, J., Frydendahl Hellwing, A.L., Lund, P., Riedel, K., Schleper, C., Højberg, O. and Urich, T. (2018). Holistic Assessment of Rumen Microbiome Dynamics through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy during Key Steps of Anaerobic Feed Degradation. mSystems. 3: e00038–18. 

  23. Stevenson, D.M. and Weimer, P.J. (2007). Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology. 75: 165-174. 

  24. Teeling, H., Fuchs, B.M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C.M., Kassabgy, M., et al. (2012). Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 336: 608- 611. 

  25. Thompson, J., Ruvinov, S.B., Freedberg, D.I., Hall, B.G. (1999). Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases. Journal of Bacteriology. 181: 7339-7345.

Editorial Board

View all (0)