Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 5 (may 2020) : 543-548

+(-)catechin raises body temperature, changes blood parameters, improves oocyte quality and reproductive performance of female mice

A.A. Mohammed, A.A. Al-Hozab
1Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Saudi Arabia
Cite article:- Mohammed A.A., Al-Hozab A.A. (2019). +(-)catechin raises body temperature, changes blood parameters, improves oocyte quality and reproductive performance of female mice. Indian Journal of Animal Research. 54(5): 543-548. doi: 10.18805/ijar.B-981.
The present study aimed to explore changes in physiological and reproductive performances upon supplementation of +(-) cactechin (200 vs. 2000 mg/kg BW) in mice. In addition, body temperature, heart rate, blood oxygen and glucose were explored after general anesthesia of +(-)cactechin animals. Sixty albino female mice were classified into three groups; control group (G1) versus two +(-) cactechin groups [G2 (200 mg/kg BW) and G3 (2000 mg/kg BW)] for 15 days in aqueous solution. Changes of body temperature, heart rate, blood parameters, oocyte quality and reproductive performances were determined and recorded. In addition, changes of body temperature, heart rate, blood oxygen and glucose were measured after anesthesia. The results indicated that +(-)catechin supplementation resulted in significant increase in body temperature, blood oxygen and WBCs in addition to significant hypoglycemia. The oocytes quality and reproductive performances were improved upon +(-)catechin supplementation. +(-)catechin supplementation did not improve the negative side effects of anesthesia. In conclusion, supplementation of +(-)catechin could benefit physiological and reproductive performances in mice. 
  1. Camlin, N.J., Sobinoff, A.P., Sutherland, J.M., Beckett, E.L., Jarnicki, A.G., Vanders, R.L., et al (2016). Maternal smoke exposure impairs the long-term fertility of female offspring in a murine model. Biol. Reprod. 94: 39. 
  2. Cao, J., Han, J., Xiao, H., Qiao, J., Han M. (2016). Effect of tea polyphenol compounds on anticancer drug in terms of anti-tumor activity, toxicology, and pharmacokinetics. Nutrients. 3: 762.
  3. Caro, A.A., Davis, A., Fobare, S., Horan, N., Ryan, C., Schwab, C. (2019). Antioxidant and pro-oxidant mechanisms of (+) catechin in microsomal CYP2E1-dependent oxidative stress. Toxicol in Vitro 54: 1–9. 
  4. Chanphai, P., Tajmir-Riahi, H.A. (2018). Conjugation of tea catechins with chitosan nanoparticles. Food Hydrocoll. 84: 561-570.
  5. Chaudhari, A., Tyagi, N., Gautam, M., Sedeqi, J. (2018). Influence of varied metabolizable energy levels on antioxidant status and performance of transition Murrah buffaloes. Indian. J. Anim. Res. 52(10): 1440-1445. 
  6. de Castro, L.S., De Assis, P.M., Siqueira, A.F., Hamilton, T.R., Mendes, C.M., Losano, J.D., et al (2016). Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxid. Med. Cell. Longev. 2016: 8213071. 
  7. Duarte, J., Pérez-Palencia, R., Vargas, F., Ocete, M.A., Pérez-Vizcaino, F., Zarzuelo, A., Tamargo, J. (2001). Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Pharmacol. 133: 117-124. 
  8. Dulloo, A.G., Seydoux, J., Girardier, L., Chantre, P., Vandermander J. (2000). Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int. J. Obes. Relat. Metab. Disord. 24: 252- 258. 
  9. Fan, Z., Xiao, Y., Chen, Y., Wu, X., Zhang, G., Wang, Q., Xie, C. (2015). Effects of catechins on litter size, reproductive performance and antioxidative status in gestating sows. Anim. Nutr. 1: 271-275.
  10. González-Fernández, R., Hernandez, J., Martin-Vasallo, P., Puopolo, M., Palumbo, A., Avila, J. (2016). Expression levels of the oxidative stress response gene ALDH3A2 in granulosa-lutein cells are related to female age and infertility diagnosis. Reprod. Sci. 23: 604–609. 
  11. Haratifar, S., Meckling, K.A., Correding, M. (2014). Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. J. Dairy Sci. 97: 672-678.
  12. Harvey, A.J., Kind, K.L., Thompson, J.G. (2002). REDOX regulation of early embryo development. Reprod. 123: 479–486.
  13. Hoff, J. (2000). Methods of Blood Collection in the Mouse. Lab. Anim. 29: 47-53. 
  14. Dar, A.H., Singh, S.K., Mondal, B.C., Palod, J. Kumar, A., Singh, V., Sharma, R.K. and Khadda, B.S. (2018). Effect of probiotic, prebiotic and synbiotic on faecal microbial count and cell-mediated immunity in crossbred calves. Indian. J. Anim. Res. 52(10): 1452-1456. 
  15. Igarashi, K., Honma, K, Yoshinari, O, Nanjo F, Hara Y. (2007). Effects of dietary catechins on glucose tolerance, blood pressure and oxidative status in Goto-Kakizaki rats. J. Nutr. Sci. Vitaminol. (Tokyo). 53: 496-500.
  16. Jana, S.K., Babu, N., Chattopadhyay, R., Chakravarty, B., Chaudhury, K. (2010). Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod. Toxicol. 29: 447–451.
  17. Karim, M., McCormick, K., Kappagoda, C.T. (2000). Effects of cocoa extracts on endothelium-dependent relaxation. J. Nutr. 130: 1205S-    1208S.
  18. Katz, D.L., Doughty, K., Ali, A. (2011). Cocoa and chocolate in human healthand disease. Antioxid. Redox. Signal. 15: 2779–2811. 
  19. Kim, J., Kim, J., Shim, J., Lee, C.Y., Lee, K.W., Lee, H.J. (2014). Cocoa phytochemicals: recent advances in molecu-lar mechanisms on health. Crit. Rev. Food Sci. Nutr. 54: 1458–1472.
  20. Kim, Y.H., Won, Y-S., Yang, X., Kumazoe, M., Yamashita, S., Hara, A., Takagaki, A., Goto, K., Nanjo, F., Tachibana, H. (2016). Green tea catechin metabolites exert immunoregulatory Effects on CD4+T cell and natural killer cell activities. J. Agric. Food. Chem. 64: 3591–3597. 
  21. Luderer, U. (2014). Ovarian toxicity from reactive oxygen species. Vitam Horm 94: 99–127. 
  22. Mohammed, A.A.; Attaai A.H. (2011). Effects of Dietary Urea on timing of embryo cleavages and blood components in Mice. Vet. World 4 (8): 360-363.
  23. Mohammed, A.A.; Sayed M.A.M., Abdelnabi M.A. (2011). A new protocol of anesthesia using thiopental, diazepam and xylazine in white New Zealand rabbits. Aust. J. Basic. Appl. Sci. 5: 1296-1300.
  24. Mohammed, A.A., Abdelnabi M.A., Modlinski J.A. (2012). Evaluation of anesthesia and reproductive performance upon diazepam and xylazine injection in rats. Anim. Sci. Pap. Rep. 30: 285-292.
  25. Mohammed, A.A., Al-Suwaiegh, SB. (2016). Effects of Nigella sativa on Mammals’ Health and Production. Adv. Anim. Vet. Sci. 4 (12): 630-636.
  26. Mohammed, A.A. (2017). Development of Oocytes and Preimplantation Embryos of Mice Fed Diet Supplemented with Dunaliella salina. Adv. Anim. Vet. Sci. 6(1): 33-39.
  27. Mohammed, A.A., Al-Hozab, A., Alshaheen, T. (2018). Effects of diazepam and xylazine on changes of blood oxygen and glucose levels in mice. Adv. Anim. Vet. Sci. 6: 121-127.
  28. Osaki, N., Harada, U., Watanabe, H., Onizawa, K., Yamaguchi, T., Tokimitsu, I., Shimasaki, H., Itakura, H. (2001). Effect of tea catechins on energy metabolism in rats. J. Oleo. Sci. 50: 677-682. 
  29. Roychoudhury, S., Agarwal, A., Virk, G. (2017). Chak-Lam Cho Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod. Biomed. Online. 34: 487-498.
  30. S.A.S. (2008). Statistical Analysis System. SAS statistics. Guide release, 2008 SAS Institute Inc., Cary, NC, USA. 
  31. Santangelo, R., Silvestrini, A., Mancuso C. (2019). Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions. Food and Chem. Toxicol. 123: 42-49. 
  32. Sheoran, N., Maan, S., Kumar, A., Batra, K., Chaudhary, D., Sihag, S., Kumar V., and Maan, N.S. (2018). Probiotic and prebiotic supplementation improving the production performance and immune characteristics of laying hens. Indian. J. Anim. Res. 52(10): 1433-1439.
  33. Suzuki, T., Takagi, A., Takahashi, M. (2012). Catechin-rich green tea extract increases serum cholesterol levels in normal diet- and high fat diet-fed rats. BMC Proceedings. 6: P47.
  34. Wang, L., Lee IM, Zhang S.M., Blumberg, J.B., Buring, J.E., Sesso, H.D. (2009). Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and olderwomen. Am. J. Clin. Nutr. 89: 905–912. 
  35. Wolfram, S., Wang, Y., Thielecke F. (2006). Anti-obesity effects of green tea: from bedside to bench. Mol. Nutr. Food. Res. 50: 176–187. 
  36. Wu, Y.G., Liu, Y., Zhou, P., Lan, G.C., Han, D., Miao, D.Q., Tan, J.H. (2007). Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell. Res. 17: 722-731.

Editorial Board

View all (0)