Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 52 issue 2 (february 2018) : 286-290

Antibacterial potential of venom extracted from wolf spider, Lycosa terrestris (Araneae: Lycosiade)

Hafiz Muhammad Tahir, Arooj Zaheer, Azhar Abbas Khan, Mazhar Abbas
1<p>Department of Zoology,&nbsp;Government College University, Lahore, Pakistan.</p>
Cite article:- Tahir Muhammad Hafiz, Zaheer Arooj, Khan Abbas Azhar, Abbas Mazhar (2017). Antibacterial potential of venom extracted from wolf spider, Lycosa terrestris (Araneae: Lycosiade) . Indian Journal of Animal Research. 52(2): 286-290. doi: 10.18805/ijar.v0iOF.8484.

The wolf spider Lycosa terrestris (Araneae: Lycosidae) is a well known arthropod containing toxic compounds. It has significant predatory potential in addition to its uses in medicinal and insecticidal formulation. Current investigations were aimed to extract and partially characterize the venom of L. terrestris and the susceptibility tests to evaluate antibacterial potential of venom supernatant and venom pellets against four pathogenic bacterial strains i.e., Gram negative Acinetobacter sp. and Pasteurella sp. and Gram Positive Staphylococcus sp. and Streptococcus sp. Results of this study revealed that the venom of L. terrestris contained six relatively high molecular weight peptides ranging from 125 kDa to 35 kDa. Moreover, results of the susceptibility test confirmed the bacteriostatic action of venom supernatant against aerobic Gram negative Acinetobacter sp. in dose dependent manner. A reduced trend of bacteriostatic inhibition was also observed for venom pellets against Acinetobacter sp. 


  1. Alanis, A.J. (2005). Resistance to antibiotics: Are we in the post-antibiotic era. Arch Med. Res., 36: 697–705.

  2. Benli, M. and Yigit N. (2008). Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae agelenidae). J. Venom. Anim. Toxin. Incl. Trop. Dis., 14: 641-650

  3. Bi, P., Whitby, M., Walker S., and Parton K.A. (2003). Trends in mortality rates for infectious and parasitic diseases in Australia: 1907–1997. Intern. Med. J., 33: 152–162.

  4. Budnik, B.A., Olsen, J.V., Egorov, T.A., Anisimova, V.E., Galkina, T.G., Musolyamov, A.K., Grishin, E.V., and Zubarev. R.A. (2004). De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolf spider Lycosa singoriensis. J. Mass Spectrom., 39: 193–201.

  5. Chen, Y., Mant, C.T. Farmer, S.W., Hancock, R.E., Vasil, M.L., and Hodges R.S. (2005). Rational design of a-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem., 280: 12316–12329.

  6. Cragg, G.M. and Newman. D.J.(2013). Natural products: a continuing source of novel drug leads,” Biochim. Biophys. Acta., 1830: 3670-3695. 

  7. Cruz, J.S., Cotta, G., Diniz C.R., and Beirão P.S.(1994). Partial purification and pharmacological characterization of a neurotoxic fraction isolated from the venom of the spider Lycosa erythrognatha. Braz. J. Med. Biol. Res., 27: 2653-2659.

  8. Ding, J.L. and Ho. B. (2004). Antimicrobial peptides: Resistant-proof antibiotics of the new millennium. Drug Dev. Res., 62: 317–    335.

  9. Frontali, N., Ceccarelli, B., Gorio, A., Mauro, A., Siekevitz, P., Tzeng, M.C., and Hurlbut. W.P. (1976). Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J. Cell. Biol., 68: 462–479.

  10. Guerrero, B., Finol, H.J., Reyes-Lugo, M., Salazar A.M., and Sánchez E.E. (2010). Activities against hemostatic proteins and adrenal gland ultrastructural changes caused by the brown widow spider Latrodectus geometricus (Araneae: Theridiidae) venom. Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 151: 113–121.

  11. Hoffman, S.J., Outterson K., Røttingen J.A., Cars, O., Clift, C., Rizvi, Z., Rotberg, F., Tomson G., and Zorzet. A. (2015). “An international legal framework to address antimicrobial resistance”. Bull World Health Organ, 93: 66.

  12. Jenssen, H., Hamill P., and Hancock R.E.W. (2006). Peptide antimicrobial agents. Clin. Microbiol. Rev., 19: 491–511.

  13. Khan, A.A., Afzal, M., Raza, A.M., Khan, A.M., Iqbal, J., Tahir, H.M., Qureshi, J.A., Khaliq, A., Zia-ul-Haq, M., and Aqeel. M.A. (2013). Toxicity of botanicals and selective insecticides to Asian citrus psylla, Diaphorina citri K. (Homoptera: Psyllidae) in laboratory conditions. Jokull, 63(8) : 52-72. 

  14. King, G.F., Gentz, M.C., Escoubas, P., and Nicholson G.M. (2008). A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon, 52: 264– 276.

  15. Kozlov, S.A. (2006). Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J. Biol. Chem. 281: 20983–20992.

  16. Kuhn-Nentwig, L. (2003). Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci., 60: 2651–2668.

  17. Kuhn-Nentwig, L., Bücheler, A., Studer, A., and Nentwig. W.(1998). Taurine and histamine: low molecular compounds in prey hemolymph increase the killing power of spider venom. Naturwissenschaften, 85: 136-138.

  18. Liu, Z.H., Qian, W., Li, J., Zhang, Y., and Liang S. (2009). Biochemical and pharmacological study of venom of the wolf spider Lycosa singoriensis. J Venom Anim Toxins incl Trop Dis., 15: 79–92.

  19. Nagaraju, S., Devaraja, S., and Kemparaju. K. (2007). “Purification and properties of hyaluronidase from Hippasa partita (funnel web spider) venom gland extract”. Toxicon, 50: 383–393.

  20. Rafael, S., Bruno, B.R., Bettina, W., Pedro I.J., and Thomaz A.A. (2015). Biochem. and Biophy Rep., 4: 324–328.

  21. Riaz, H., Malik, F., Raza, A., Hameed, A., Ahmed, S., and Shah. P.A. (2011). Assessment of antibiotic prescribing behavior of consultants of different localities of Pakistan. Afr. J. Pharm. Pharmacol., 5: 596–601.

  22. Saez, N.J., Senff, S., Jensen, J.E., Er, S.Y., Herzig, V., Rash. L.D., and King. G.F. (2010). Spider-Venom Peptides as Therapeutics. Toxins (Basel), 2: 2851–2871.

  23. Sambrook, J. and Russle D.W. (2001). “Commonly Used Techniques in Molecular Cloning,” Appendix 8, in Molecular Cloning. Sambrook, J. and Russle, D. W, (eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. p8.

  24. Santos, D.M, Verly, R.M., Piló-Veloso, D., de-Maria M.A. M., de-Carvalho P.S. Cisalpino. (2010).. LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids. 39(1):135–44. 

  25. Statistical Package for Social Sciences. (2005). SPSS Inc. South Wacker Drive, Chicago, USA.

  26. Vassilevski, A.A., Kozlov S.A., and Grishin E.V. (2009). Molecular diversity of spider venom. Biochemistry (Mosc.), 74: 1505–1534.

  27. Vassilevski, A.A., Sachkova, M.Y., Ignatova, A.A., Kozlov, S.A., Feofanov. A.V., and Grishin. E.V. (2013). Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. FEBS Journal, 280(23): 6247–6261.

  28. Vineetha, N., Vignesh R.A., and Sridhar D. (2015). Preparation, standardization of antibiotic discs and study of resistance pattern for First-Line antibiotics in isolates from clinical samples. International J. Appl. Res., 1(11): 624-631.

  29. Wang, L., Wang, Y.J., Liu, Y.Y., Li, H., Guo, L.X., Liu, Z.H., Shi X. L., and Hua M. (2014). In Vitro Potential of Lycosin-I as an Alternative Antimicrobial Drug for Treatment of Multidrug-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents. Chemother., 58: 6999–7002.

  30. Wang, G., Li X., and Wang Z. (2016). APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids. Res., 44: 1087–1093.

  31. Windley, M.J., Herzig, V., Dziemborowicz, S.A., Hardy, M.C., King, G.F., and Nicholson. G.M. (2012). Spider-venom peptides as bioinsecticides. Toxins (Basel), 4: 191-227.

  32. Wright, G.D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol., 5: 175–186.

  33. Xu, K., Ji Y. and Qu. X.,(1989). Purification and characterisation of an antibacterial peptide from venom of Lycosa singoriensis. Acta. Zool. Sinica., 35: 300–305.

  34. Yan, L.Z. and Michael E.A. (1998). Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J. Biol. Chem., 273: 2059-2066.

  35. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415: 389-395.

     

Editorial Board

View all (0)