Comparative Study on Spermatological Parameters and Seminal Plasma Composition of Labeo rohita Strains from Tamil Nadu, India

DOI: 10.18805/ijar.B-3879    | Article Id: B-3879 | Page : 1229-1234
Citation :- Comparative Study on Spermatological Parameters and Seminal Plasma Composition of Labeo rohita Strains from Tamil Nadu, India.Indian Journal of Animal Research.2020.(54):1229-1234
M. Muthu Abishag, C. Judith Betsy, J. Stephen Sampath Kumar mabishag@gmail.com
Address : Department of Aquaculture, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi-628 008, Tamil Nadu, India.
Submitted Date : 9-07-2019
Accepted Date : 3-07-2020


Background: The fertilization success and seed quality of Labeo rohita from different locations show wide variation. The important reason for these variations is sperm quality. Spermatological parameters are considered to be the deciding factors of sperm quality. The present study envisages delineating the strain-specific variations in spermatological parameters and seminal plasma composition of L. rohita from three different locations (Manimuthar, Thanjavur and Mettur) of Tamil Nadu. 
Methods: In the present study conducted during 2019, milt samples were collected from three different strains of Labeo rohita. The samples were analyzed for the spermatological parameters such as pH, volume, sperm density, spermatozoa motility and seminal plasma composition (Na+, K+, Ca2+, Mg2+, Cl-) following standard protocols and the statistical comparisons were made.
Result: Among the strains, the spermatozoa of Thanjavur strain exhibited best performance with highest motility duration (82.33±6.03 s) (p<0.025) and sperm density (2.526±0.25 × 109 cells/ml). With regard to seminal plasma composition, the concentration of Na+ (113.64±4.97 mmol/L) and K+ (149.91±1.67 mmol/L) was the highest in Thanjavur strain. Mettur strain exhibited highest Ca2+ (1.24±0.06 mmol/L) content (p<0.01) besides its lowest Na+ concentration (51.28±3.52 mmol/L). The results revealed a significant correlation between ionic composition of seminal plasma and sperm motility. The increased motility duration in Thanjavur strain was due to increased K+ concentration. A synergistic effect of ions in controlling sperm motility was also observed as the higher Ca2+ concentration could sustain lowered Na+ concentration in Mettur strain.


Ionic composition Rohu Seminal plasma Spermatology Strains


  1. Abernethy, M.H. and Fowler, R.T., (1982). Micellar improvement of the calmagite compleximetric measurement of magnesium in plasma. Clinical chemistry. 28(3):520-522.
  2. Alavi, S.M.H., Kozak, P., Hatef, A., Hamackova, J. and Linhart, O. (2010). Relationships between reproductive characteristics in male Vimba vimba L. and the effects of osmolality on sperm motility. Theriogenology. 74:317–325.
  3. Alavi, S.M.H. and Cosson, J. (2006). Sperm motility in fishes (II): Effects of ions and osmolality: a review. Cell biology International. 30(1): 1-14.
  4. Alavi, S.M.H., MojaziAmiri, B., Cosson, J., Karami, M., Abdoulhay, H.A., Pourkazemi, M. and Akhoundzadeh, M.A. (2006). Determination of some seminal plasma indices, sperm density and sperm motility in the Persian sturgeon Acipenser persicus. Iranian Journal of Fisheries Sciences. 5(2):1-18.
  5. Aramali, M.S., Nazari, R.M. and Gharibi, M.R. (2015). Retracted: Effect of Post Thaw Storage Time on Motility and Fertility of Cryopreserved Beluga Sturgeon (Huso huso) sperm. Reproduction in Domestic animals. 50(2):349-352.
  6. Asturiano, J.F., Pérez, L., Garzón, D.L., Marco-Jiménez, F., Penaranda, D.S., Vicente, J.S. and Jover, M. (2004). Physio-chemical characteristics of seminal plasma and development of media and methods for the cryopreservation of European eel sperm. Fish Physiology and Biochemistry. 30(3-4): 283-293.
  7. Ayyapan, S. (2011). Handbook of Fisheries and Aquaculture. ICAR, New Delhi. Pp. 200-205.
  8. Babiak, I., Glogowski, J., Luezynski, M.J., Kucharezyk, D. and Luezynski, M. (1995). Cryopreservation of the milt of the northern pike. Fish Biology, 46 (5): 819-828.
  9. Betsy, C.J. and Kumar, J.S.S. (2014). New classification of motility score in fishes to determine the quality of spermatozoa. International Journal of Fisheries and Aquatic Studies. 1(4): 20-23.
  10. Betsy, C.J., (2013). Role of supplemented energy sources on spermatological parameters of selected cultivable carps. M.F.Sc. Thesis, Tamil Nadu Fisheries University, Nagapattinam, India. P:101.
  11. Borges, A., Siqueira, D.R., Jurinitz, D.F., Zanini, R., Do Amaral, F., Grillo, M.L., Oberst, E.R. and Wassermann, G.F. (2005). Biochemical composition of seminal plasma and annual variations in semen characteristics of jundia Rhamdia quelen (Quoy and Gaimard, Pimelodidae). Fish Physiology and Biochemistry. 31(1): 45-53.
  12. Bozkurt, Y., Öðretmen, F., Kökçü, Ö. and Ercin, U. (2011). Relationships between seminal plasma composition and sperm quality parameters of the Salmo trutta macrostigma (Dumeril, 1858) semen: with emphasis on sperm motility. Czech Journal of Animal Science. 56(8): 355-364.
  13. Chondar, S.L. (1999). Biology of finfish and shellfish. SCSC Publisher, Howrah. P: 514.
  14. Ciereszko, A. (2008). Chemical composition of seminal plasma and its physiological relationship with sperm motility, fertilizing capacity and cryopreservation success in fish. In Fish Spermatology. Edited by Alavi SMH, Cosson J, Coward R, Rafiee G. Oxford: Alpha Science. pp. 215-    240.
  15. Cosson, J. (2004). The ionic and osmotic factors controlling motility of fish spermatozoa. Aquaculture International. 12(1): 69-85.
  16. FAO. (2018). Status of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals. United Nations Food and Agricultural Organisation, Rome, Italy. pp.1-210.
  17. Gallego, V. and Asturiano, J. F. (2018). Fish sperm motility assessment as a tool for aquaculture research: a historical approach. Reviews in Aquaculture. pp.1–28. 
  18. Gallego, V., Cavalcante, S.S., Fujimoto, R.Y., Carneiro, P.C.F., Azevedo, H.C., Maria, A.N. (2017). Fish sperm subpopulations: changes after cryopreservation process and relationship with fertilization success in tambaqui (Colossoma macropomum). Theriogenology. 87: 16-24.
  19. Gitelman, H. J. (1967). Determination of calcium using o-cresolphthaleine complexone. Analytical. Biochemistry. 18: 521-522.
  20. Golpour, A., Imanpoor, M. R. and Hosseini, S.A. (2011). Changes in ionic ratios of seminal plasma and its effect on sperm characteristics in Caspian Roach (Rutilus rutilus caspicus) during spawning migration. Fisheries and Aquaculture Journal. 17: 8-18.
  21. Gunnes, K. and Gjedrem, T., (1978). Selection experiments with salmon. IV. Growth of Atlantic salmon during two years in the sea. Aquaculture. 15(1):19–33. 
  22. Hatef, A., Niksirat, H., Amiri, B.M., Alavi, S.M.H. and Karami, M. (2007). Sperm density, seminal plasma composition and their physiological relationship in the endangered Caspian brown trout (Salmo trutta caspius). Aquaculture Research. 38(11): 1175-1181.
  23. Inaba, K. (2008). Molecular mechanism of the activation of flagellar motility in sperm. In: Alavi S.M.H., Cosson, J.J., Coward, K., Rafiee, G., editors. Fish spermatology. Oxford, UK: Alpha Science International Ltd. pp. 267–79.
  24. Jamieson, B.G.M. (1991). Fish evolution and systematic: Evidence from spermatozoa. Cambridge University Press. Cambridge. pp. 319.
  25. Jhingran, V.G. (1991). Fish and Fisheries of India. Delhi, Hindustan Publishing Corporation (India).
  26. Khan, N.S., Sarder, M.R.I., Faroque, M.A.A. and Mollah, M.F.A. (2015). Standardization of sperm cryopreservation techniques of Indian Major Carp Rohu (Labeo rohita, Hamilton 1822). International Journal of Fisheries and Aquatic Studies. 2(6): 175-181.
  27. Kruger, J.C., Smit, G.L., Van Vuren, J.H.J., Ferreira, J.T.(1984). Some chemical and physical characteristics of the semen of Cyprinus carpio and Oreochromis mossambicus. Journal of Fish Biology. 24: 263-272.
  28. Lahnsteiner, F., Berger, B., Weismann, T., Patzner, R. (1996).Motility of spermatozoa of Alburnus alburnus (Cyprinidae) and its relationship to seminal plasma composition and sperm metabolism. Journal of Fish Physiology and Biochemistry. 15: 167-179.
  29. Lahnsteiner, F., Patzner, R.A. and Weismann, T. (1994). The testicular main ducts and spermatic ducts in cyprinid fishes: Composition of the seminal fluid. Journal of Fish Biology. 44: 459-463.
  30. Lam, T.J. (1983). Environmental influences on gonadal activity in fishes. In: Fish Physiology. Hoar,W.S., Randall, D.J. and Donaldson, E.M. (Eds.). Academic Press, NewYork, IXB: 65-116.
  31. Li, P., Li, Z.H., Hulak, M., Rodina, M. and Linhart, O. (2012). Regulation of spermatozoa motility in response to cations in Russian sturgeon Acipensergueldenstaedtii. Theriogenology. 78(1): 102-109.
  32. Luhariya, R.K., Lal, K.K., Singh, R.K., Mohindra, V., Punia, P., Chauhan, U.K., Gupta, A. and Lakra, W.S. (2012). Genetic divergence in wild population of Labeo rohita (Hamilton, 1822) from nine Indian rivers, analyzed through MtDNA cytochrome b region. Molecular Biology Reports. 39(4): 3659-3665.
  33. Morisawa, M., Suzuki, K., Shimizu, H., Morisawa, S. and Yasuda, K. (1983). Effects of osmolality and potassium on motility of spermatozoa from freshwater cyprinid fishes. Journal of Experimental Biology. 107:95-103.
  34. Nomura, M. (1964). Bulletin of the Japanese Society for the Science of Fish. 30: 723-733.
  35. Özgür, M.E., Yumuþakbas, H., Daðli, M. And Erdoðan, S. (2015). Comparison of Some Elements in Sperm Seminal Plasma of Rainbow Trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario). Journal of Applied Biological Sciences. (2):64-67.
  36. Poupard, G., Gatti, JL., Cosson, J., Jeulin, C., Fierville, F., Billard, R. (1997). Effects of extracellular environment on the osmotic signal transduction involved in activation of motility of carp spermatozoa. Journal of Reproduction and Fertilty. 110:315–327.
  37. Redondo-Muller, C., Cosson, M.P., Cosson, J.,Billard, R. (1991). In vitro maturation of the potential for movement of carp spermatozoa. Molecular Reproduction and Development. 29:259-70.
  38. Rosengrave, P., Taylor, H., Montgomerie, R., Metcalf, V., McBride, K. and Gemmell, N.J., (2009). Chemical composition of seminal and ovarian fluids of chinook salmon (Oncorhynchus tshawytscha) and their effects on sperm motility traits. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 152(1): 123-129.
  39. Schoenfeld, F.G. and C.J. Lewellen.(1964). A colorimetric method for determination of serum chloride. Clinical Chemistry. 10: 533.
  40. Secer, S., Tekin, N., Bozkurt, Y., Bukan, N., Akcay, E. (2004).Correlation between biochemical and spermatological parameters in rainbow trout (Oncorhynchus mykiss) semen. Israeli Journal of Aquaculture. 56:274–280.
  41. Shah, M.S., Ghosh, A.K., Rahi, M.L., Huq, K.A., Rahaman, S.B. and Sabbir, W. (2011).Production of heterotic hybrid in rohu (Labeo rohita) through strain crossing. International Journal of Life Sciences. 5(1):32-38.
  42. Sood, P., Sharma, A., Chahota, R., and Bansal, S. (2020). Evaluation of certain minerals and seminal plasma proteins in Jersey bulls having major sperm morphological defects. Indian Journal of Animal Research. 54(1): 6-10.
  43. Sunderman, F.W. Jr. and Sunderman, F.W. (1959). The rapid colorimetric estimation of potassium. American Journal of Clinical Pathology. 29: 95.
  44. Valsa, J., Skandhan, K.P., Sahab Khan, P., Sumangala, B. and Amith, S. (2013). Estimation of calcium and magnesium in seminal plasma. A comparative study of colorimetry and atomic absorption spectrophotometry. International Journal of Analytical and Bioanalytical Chemistry. 3:23-26.
  45. Verma, D.K., Routray, P., Dash, C., Dasgupta, S. and Jena, J.K. (2009). Physical and biochemical characteristics of semen and ultrastructure of spermatozoa in six carp species. Turkish Journal of Fisheries and Aquatic Sciences. 9(1): 67-76.

Global Footprints