Indian Journal Of Animal Research
Publish
your articles with us

Quick Facts



Payment Options

payment portals

Click here to pay directly

Myostatin silencing effect on basic helix–loop–helix transcription factors in caprine foetal fibroblast cells

Biswajyoti Borah, Ajit Pratap Singh, Hamen Gogoi, Amlan Jyoti Phukan and Bikash Chandra Sarkhel

Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Jabalpur- 482004, Madhya Pradesh, India.

ajitabtc@gmail.com

Page Range:
843-850
Article ID:
B-3307
Online Published:
6-05-2017
Abstract

Transgenic  food  animal  production  is one  of  the  potential and  need  oriented  research  to  mitigate  the  food  crises  of  the  world.  In  vitro  gene  silenced  animal  cells  and  making  use of  these  cells   for  transgenesis  one of the suitable way to produce  productive animals.  Myostatin is a negative regulator of muscle growth, has the potential to increase the muscle mass upon its silencing. Four Hush 29-mer  anti- myostatin (MSTN)  shRNA  constructs  were checked for myostatin  gene silencing in caprine foetal fibroblast cells  and  its  subsequent effect  on  basic  helix– loop–helix (bHLH) transcription  factors. These factors are necessary for the terminal differentiation, proliferation, and homeostasis of muscle development. Different  shRNA constructs displayed 55.1  to  91.5% (p< 0.01) of  myostatin  silencing  in  caprine  foetal  fibroblast  cells  and  upregulation of  myogenic gene. Upregulation of 7.97  to  111.67 %  for MyoD, 77.0 %  to  319.47 % for myogenin,  16.67 %  to  138.0 %  for Myf5 were observed . The  Pearson  correlation  established  a  negative  correlation  between  myostatin  and  genes under study.   Result  suggests  that  knockdown  of  MSTN a  potential approach  to  improve  caprine musculatures.

Keywords
Basic helix–loop–helix, Caprine, Foetal Fibroblast, yostatin, Silencing,Transcription factors.
References
  1. Borah, B., Singh, A. P., and Sarkhel. B. C. (2016). Effect of myostatin gene silencing on the expression of extracellular matrix formative genes in caprine foetal fibroblast cells. Indian Journal of Animal Sciences 86 (4): 48–00, April 2016/Article. 
  2. Christ, B., Huang, R., and Scaal. M.(2007). Amniote somite derivatives. Dev. Dyn. 236:2382–2396 
  3. Dominique, J.E., and Gérard. C.(2006). Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp. Cell Res. 312: 2401–2414.
  4. Gayraud-Morel, Chrétien, B., F., Flamant, P., Gomès, D., Zammit, P.S., and Tajbakhsh, S. (2007). A role for the myogenic determination gene Myf5 in adult regenerative Myogenesis. Dev. Biol. 312:13–28.
  5. Tripathi, A.K., Ramani, U.V., Rank, D.N., and Joshi. C.G.(2011). In vitro expression profiling of Myostatin, Follistatin, Decorin and muscle specific transcription factors in adult caprine contractile myotubes. J. Muscle Res. Cell Motil. 32: 23–30.
  6. Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., and Nonaka I. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535.
  7. Kassar-Duchaussoy, L, Gayraud-Morel, B., Gomès, D., Rocancourt, D., Buckingham, M., Shinin, V., and Tajbakhsh. S.(2004). Mrf4 determines skeletal muscle identity in Myf5: Myod double-mutant mice. Nature 43:466–471.
  8. McPherron, A.C. and Lee. S.J.(1997). Double muscling in cattle due to mutations in the Myostatin gene. Proceedings of Natural Academy of Science, USA. 94:12457-12461.
  9. Rodgers, B.D., and Weber G.M.(2001). Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone Americana. Biochem. Biophys. Res. Commun. 129: 597–603
  10. Golding, M.C., Long, C.R., Carmell, M.A., Hannon, G.J.,and Westhusin M.E. (2006). Suppression of prion protein in livestock by RNA interference. Proceedings of Natural Academy of Science, USA .103:5285–5290.
  11. Lares, M.R., Rossi, J.J., and Ouellet. D.L (2010). RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 28: 570–579
  12. Tripathi, A.K., Ramani, U.V., Petal, A.K., Rank, D.N., and Joshi. C.G.(2012). Short Hairpin RNA Induced Myostatin Gene Silencing In Caprine Myoblast Cells In Vitro. Appl. Biochem. Biotech. 169: 688-694.
  13. http://www.origene.com/shrna/Custom-shRNA.aspx
  14. http://www.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
  15. Sambrook, and Russell. (2001). Molecular cloning: A laboratory manual, volume 3, New York: Cold Spring Harbor Lab. Press. 
  16. http://frodo.wi.mit.edu/primer3/
  17. Livak, K.J., and Schmittgen T.D.(2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2ÉÄÄCt method. Methods. 25: 402–408.
  18. Luo, Y.K., Luo, J., Dai, R., and Li N.( 2010). Myostatin Gene Knockdown by Myostatin specific Short Interfering Hairpin RNAs Increases MyoD Expression in C2C12 Myoblasts. Prog. Biochem. Biophys.37:451-459.
  19. Liu, C., Li, W., Zhang, X., Zhang, N., He, S., Huang, J., Ge, Y., and Liu. M.(2012). The critical role of myostatin in differentiation of sheep myoblast. Biochem. Bioph. Res. Co. 422: 381-386.
  20. Amthor, H., Nicholas, G., McKinnell, I., Kemp, C.F., Sharma, M., Kambadur, R., and Patel. K.(2004). Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of Myogenesis. Dev. Biol. 270: 19–30. 
Global footprints


© 2015 ARCC JOURNALS. All Rights Reserved. Powered By ARCC JOURNALS