Derivation, enrichment and characterization of goat (Capra hircus) spermatogonial stem cells from pre-pubertal testes

DOI: 10.18805/ijar.6696    | Article Id: B-3033 | Page : 662-667
Citation :- Derivation, enrichment and characterization of goat (Capra hircus) spermatogonial stem cells from pre-pubertal testes .Indian Journal Of Animal Research.2016.(50):662-667

Ankur Sharma, Syed Mohmad Shah, Neha Saini, Ramakant Kaushik, Manoj Kumar Singh, Radhey Sham Manik, Suresh Kumar Singla, Prabhat Palta and Manmohan Singh Chauhan*.
Address :

Animal Biotechnology centre, National Dairy Research Institute, Karnal-132 001, India

Submitted Date : 2-06-2015
Accepted Date : 10-06-2015


Isolation of goat spermatogonial stem cells (gSSC) from pre-pubertal testes (3 to 6 months of age) by double enzymatic digestion is reported. The isolated cells were further enriched for spermatogonial stem cell population by filtration through 80- and 60-µm nylon mesh filters, followed by differential plating on DSA-Lectin coated dishes. After overnight incubation, the unattached cells (putative gSSCs) were cultured on sertoli cell feeder layers in SSC medium, composed of DMEM supplemented with 10% FBS, GDNF (Glial cell line derived neurotrophic factor, 40 ng mL-1), bFGF (Basic fibroblast growth factor, 10 ng mL-1) and EGF (Epidermal growth factor, 10 ng mL-1). After 10-15 days, the putative SSCs started to develop and the cultures were maintained till the colonies stopped growing. The colonies were characterized for their affinity to Dolichos biflorus Agglutinin (DBA), alkaline phosphatase (AP) activity and various spermatogonial stem cell markers (PLZF, THY1, UCHL1, BCL6B and ID4). The developed colonies were positive for DBA, AP and all other markers, which is an indication of their being spermatogonial stem cells. In the present study, goat SSCs have been successfully isolated and characterized and the culture conditions will be improved further for developing more efficient and long term in vitro spermatogonial stem cell culture system in goat.


Goat spermatogonial stem cells Testes Double digestion Enrichment Characterization RT-PCR.


  1. Abbasi, H., Tahmoorespur, M., Hosseini S. M., Nasiri, Z., Bahadorani, M., Hajian, M., Nasiri, M. R. and Nasr-Esfahani, M. H. (2013). THY1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology, 80: 923–932.
  2. Aponte, P. M., Takeshi, S., van de Kant, H. J., and Rooij, D. G. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology, 65: 1828–1847.
  3. Aponte, P.M., Takeshi, S., Teerds, K. J., Mizrak, S. C., van de Kant, H. J. G., and de Rooij, D. G. (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction, 136: 543–557.
  4. Fujihara, M., Kim, S. M., Minami, N., Yamada, M. and Imai, H. (2011). Characterization and in vitro culture of male germ cells from developing bovine testis. J. Reprod. Dev., 57: 355–364.
  5. Goel, S., Reddy, N., Mahla, R. S., Suman, S. K. and Pawar, R. M. (2011). Spermatogonial stem cells in the testis of an endangered bovid: Indian black buck (Antilope cervicapra L.). Ani. Reprod. Sci., 126: 251–257.
  6. Goel, S., Reddy, N., Mandal, S., Fujihara, M., Kim, S. M. and Imai, H. (2010). Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology, 74: 1221–1232. 
  7. Heidari, B., Rahmati-Ahmadabadi, M., Akhondi, M. M., Zarnani, A. H., Jeddi-Tehrani, M., Shirazi, A., Naderi , M. M. and Behzadi, B. (2012). Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J. Assist. Reprod. Genet., 29:1029–1038.
  8. Herrid, M., Davey, R. J. and Hill, J. R. (2007). Characterization of germ cells from prepubertal bull calves in preparation for germ cell transplantation. Cell and Tissue Research, 330: 321–329.
  9. Honaramooz, A., Behboodi, E., Blash, S., Megee, S. O., and Dobrinski, I. (2003a). Germ cell transplantation in goats. Mol. Reprod. Dev., 64: 422–428.
  10. Honaramooz, A., Behboodi, E., Megee, S. O., Overton, S. A., GalantinoHomer, H., Echelard, Y., and Dobrinski, I. (2003b). Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol. Reprod., 69: 1260–1264.
  11. Izadyar, F., Spierenberg, G. T., Creemers, L. B., Den Ouden, K., and Rooij, D. G. (2002). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction, 124: 85–94.
  12. Kadam, P. H., Kala, S., Agrawal, H., Singh, K. P., Singh, M. K., Chauhan, M. S., Palta, P., Singla, S. K. and Manik, R. S. (2013). Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells. Reprod. Fertil. Dev., 25: 1149–1157.
  13. Kala S., Kaushik R., Singh K. P., Kadam P. H., Singh M. K., Manik R. S., Singla, S. K., Palta, P., and Chauhan, M. S. (2012). In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell. J Assist Reprod Genet., 29: 1335–42.
  14. Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., and Shinohara, T. (2003). Long-term proliferation inculture and germline transmission of mouse male germline stem cells. Biol. Reprod., 69: 612–616.
  15. Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004a). Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod., 71: 722–731.
  16. Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004b). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci., USA, 101: 16 489–16 494.
  17. Kuijk, E. W., Colenbrander, B., and Roelen, B. A. (2009). The effects of growth factors onin vitro-cultured porcine testicular cells. Reproduction, 138: 721–731.
  18. Luo, J., Megee, S, Rathi, R. and Dobrinski, I. (2006). Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev., 73: 1531–1540.
  19. Oatley, J. M., Reeves, J. J., and McLean, D. J. (2004). Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biol. Reprod., 71: 942–947.
  20. Oatley, M. J., Kaucher, A. V., Racicot, K. E. and Oatley, J. M. (2011). Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol. Reprod., 85: 347–356.
  21. Pramod, R. K. and Mitra A. (2014). In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J. Assist. Reprod. Genet., 31: 993–1001
  22. Reding, S. C., Stepnoski, A. L., Cloninger, E. W. and Oatley, J. M. (2010). THY1 is a conserved marker of undifferentiated spermatogonia in the prepubertal bull testis. Reproduction, 139: 893–903.
  23. Shah, S. M., Saini, N., Ashraf, S., Zandi, M., Singh, M. K., Manik, R. S., Singla, S. K., Palta, P., and Chauhan, M.S. (2015). Comparative expression analysis of gametogenesis-associated genes in foetal and adult bubaline (Bubalus bubalis) ovaries and testes. Reprod Dom Anim, 50: 365–377.
  24. Sousa, M., Cremades, N., Alves, C., Silva, J., and Barros, A. (2002). Developmental potential of human spermatogenic cells co-cultured with Sertoli cells. Hum. Reprod., 17: 161–172.
  25. Tagelenbosch, R., and de Rooij, D. G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res., 290: 193–200.
  26. Wang, J., Cao, H., Xue, X., Fan, C., Fang, F., Zhou, J., Zhang, Y. and Zhang, X. (2014). Effect of vitamin C on growth of caprine spermatogonial stem cells in vitro. Theriogenology, 81: 545–555.

Global Footprints