Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 2 (february 2020) : 222-227

Baluchistan Gerbil hepatotoxicity as a new biomonitor of heavy metal pollution

A.I. Algefare, M.A. Alfwuaires, G.M. Badr
1Department of Biological Sciences, Faculty of Science, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia.
Cite article:- Algefare A.I., Alfwuaires M.A., Badr G.M. (2019). Baluchistan Gerbil hepatotoxicity as a new biomonitor of heavy metal pollution. Indian Journal of Animal Research. 54(2): 222-227. doi: 10.18805/ijar.B-1120.
Hepatotoxicity was targeted in Baluchistan Gerbil (Gerbillus nanus) as a biomonitor of pollution with heavy metals near Al-Asfar lake in Al-Ahsa province, KSA. The study showed as compared to reference animals that polluted gerbil’s liver recorded significant increase of lead and copper and significant decrease of zinc contents. In addition to significant decrease in RBC count, hemoglobin content, hematocrit percentage, MCH, MCV and MCHC. Also, significant increase in serum liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase) activity was observed. Liver oxidative stress (OS) was evidenced by significant increase in, malondialdehyde level and significant decrease of superoxide dismutase and catalase enzyme activities. Light and ultra-histopathological results assessed the liver tissue impairment. In conclusion, the present study suggested that lead and copper could be the major heavy metals serving hepatotoxicity in gerbils. This study present Gerbillus nanus as the first bio monitor in native wild mammal in Al-Ahsa. 
  1. Abdel-Moneim, A. M. (2014). Histopathological and ultrastructural perturbations in tilapia liver as potential indicators of pollution in Lake Al-Asfar, Saudi Arabia. Environ. Sci. Pollut. Res. Int. 21(6): 4387-96.
  2. Aburto, E.M., Cribbm A.E, Fuentealba, I.C., Ikede, B.O., Kibenge, F.S. and Markham, F. (2001). Morphological and biochemical assessment of the liver response to excess dietary copper in Fischer 344 rats. Can. J. Vet. Res. 65:97–103. 
  3. Adham, K.G., Al-Eisa, N.A. and Farhood, M.H. (2011). Impact of heavy metal pollution on the hemogram and serum biochemistry of the libyan jird, Meriones libycus. Chemosphere. 84: 1408-1415
  4. Aghamirkarimi, S., Mashinchian Moradi, A., Sharifpour, I., Jamili, S. and Ghavam Mostafavi, P. (2017). Sublethal effects of copper nanoparticles on the histology of gill, liver and kidney of the Caspian roach, Rutilus rutilus caspicus. Global J. Environ. Sci. Manage. 3:323–32. 
  5. Al-Otaibi, F.S., Ajarem, J.S., Abdel-Maksoud, M.A., Maodaa, S., Allam, A.A., Al-Basher, G.I. and Mahmoud, A.M. (2018). Stone quarrying induces organ dysfunction and oxidative stress in Meriones libycus. Toxicol. Ind. Health. 34(10):679-692. 
  6. Banchroft, J.D. and Gamble, M. (2008). Theory and Practice of Histological Techniques. 5th ed. Edinburgh, UK: Churchill Livingstone.
  7. Beernaert, J., Scheirs, J., Leirs, H., Blust, R. andVerhagen, R. (2007). Non-destructive pollution exposure assessment by means of wood mice hair. Environ. Pollut. 145(2):443-451.
  8. Cholewiñska, E., Ognik, K., Fotschki, B., Zduñczyk, Z. and Juœkiewicz, J. (2018). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. Plos One. 13: e0197083. 
  9. D’Havé, H., Scheirs, J., Mubiana, V.K., Verhagen, R., Blust, R. and De Coen, W. (2006). Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations. Environ. Pollut. 142:438-448.
  10. Fahmy, G.H. and Fathi, A.A. (2011). Limnological Studies on the Wetland Lake, Al-Asfar, with Special References to Heavy Metal Accumulation by Fish. Am. J. Environ. Sci. 7 (6): 515-524.
  11. Fathi, A.A., Azooz, M.M. and Al-Fredan, M.A. (2013). Hydrobiological Investigation of Al-Asfar Lake, Al-Hassa, Saudi Arabia. El-    Minia Sci. Bull. 24 (1): 21-36.
  12. Ferrante, M., Pappalardo, A.M., Ferrito, V., Pulvirenti, V., Fruciano, C., Grasso, A., Sciacca, S., Tigano, C. and Copat, C. (2017). Bioaccumulation of metals and biomarkers of environmental stress in Parablennius sanguinolentus (Pallas, 1814) sampled along the Italian coast. Marine Pollut. Bull. 122: 288-296. 
  13. Ferrante, M., Signorelli, S.S., Ferlito, S.L., Grasso, A., Dimartino, A. and Copat, C. (2018). Groundwater-based water wells characterization    from Guinea Bissau (Western Africa): a risk evaluation for the local population. Sci. Total Environ. 619-620: 916-926.
  14. Gaetke, L.M., Chow-Johnson, H.S. and Chow, C.K. (2014). Copper: toxicological relevance and mechanisms. Arch. Toxicol. 88:1929-1938. 
  15. Gupta, Y.R., Sellegounder, D., Kannan, M., Deepa, S., Senthilkumaran, B. and Basavaraju, Y. (2016). Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): Biochemical, histological and proteomic approaches. Aquac.Fish.1:15–23.
  16. Hacibekiroglu, T., Basturk, A., Akinci, S., Bakanay, S.M., Ulas, T., Guney, T. and Dilek, I. (2015). Evaluation of serum levels of zinc, copper, and Helicobacter pylori IgG and IgA in iron deficiency anemia cases. Eur. Rev. Med. Pharmacol. Sci. 19: 4835-4840
  17. Harrison, D.L. and Bates, P.J.J. (1991). The Mammals of Arabia. Harrison Zoological Museum; 2nd Revised edition (Aug. 1991) ISBN: 978-0951731307.
  18. Jadhav, S.H., Sarkar, S.N., Aggarwal, M. and Tripathi, H.C. (2007). Induction of oxidative stress in erythrocytes of male rats subchronically exposed to a mixture of eight metals found as groundwater contaminants in different parts of India. Arch. Environ. Contam. Toxicol. 52: 145–151.
  19. Liua, B., Jianga, H., Lua, J., Baiyuna, R., Lia, S., Lva,Y., Lia, D., Wua, H. and Zhanga, Z. (2018). Grape seed procyanidin extract ameliorates lead-induced liver injury via miRNA153 and AKT/GSK-3â/Fyn-mediated Nrf2 activation. J. Nutr. Biochem. 52:115–123.
  20. Maharajan, A., Rufus Kitto, M., Paruruckumani, P.S. and Ganapiriya, V. (2016). Histopathology biomarker responses in Asian sea bass, Lates calcarifer (Bloch) exposed to copper. J. Basic Appl. Zool. 77: 21–30.
  21. Mansour, S.A., Soliman, S.S. and Soliman, K.M. (2016). Monitoring of heavy metals in the environment using bats as bioindicators: First study in Egypt. Vespertilio.18: 61–78.
  22. Marcheselli, M., Sala, L. and Mauri, M. (2010). Bioaccumulation of PGEs and other traffic-related metals in populations of the small mammal Apodemus sylvaticus. Chemosphere. 80:1247-1254.
  23. Ohkawa, H., Ohish, N. and Yagi, K. (1979): Assay for lipid peroxidase in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358. 
  24. Osawa, M., Yamaguchi, T., Najamura, Y., Kaneko, S., Onodear, M., sawada, K., Egallan, A., Wu, H., Nakauchi, H. and Iwama, A. (2002). Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood, 100: 2769-2777.
  25. Sánchez-Chardi, A., Marques, C.C., Gabriel, S.I., Capela-Silva, F., Cabrita, A.S., López-Fuster, M.J., Nadal, J. and Mathia, M.L. (2008). Haematology, genotoxicity, enzymatic activity and histopathology as biomarkers of metal pollution in the shrew Crocidura russula. Environ. Pollut.156: 1332–1339.
  26. Sánchez-Chardi, A., Penarroja-Matutano, C., Ribeiro, C.A.O. and Nadal, J. (2007). Bioaccumulation of metals and effects of a landfill in small mammals. Part II. The wood mouse, Apodemus sylvaticus. Chemosphere. 70: 101-109.
  27. Stankovic, S., Kalaba, P. and Stankovic, A.R. (2014). Biota as toxic metal indicators. Environ. Chem. Lett. 12: 63–84.
  28. Swarup, D., Naresh, R., Varshney, V.P., Balagangatharathilagar, M., Kumar, P., Nandi, D. and Patra, R.C. (2007). Changes in plasma hormones profile and liver function in cows naturally exposed to lead and cadmium around different industrial areas. Res.Vet. Sci. 82:16-21. 
  29. Tang, H., Xu, M., Shi, F., Ye, G., Lv, C., Luo, J., Zhao, L. and Li, Y. (2018). Effects and Mechanism of Nano-Copper Exposure on Hepatic Cytochrome P450 Enzymes in Rats. Int. J. Mol. Sci. 19: 2140. 
  30. Valko, M., Morris, H. and Cronin, M.T. (2005). Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 12(10): 1161-1208.
  31. Yang, C.A., Chen, Y.H., Ke, S.C., Chen, Y.R., Huang, H.B., Lin, T.H. and Chen, Y.C. (2011): Correlation of copper interaction, copper-driven aggregation and copper-driven H2O2 formation with Aâ40 conformation. Int. J. Alzheimers Dis. ID 607861:1-7. 
  32. Yuan, G., Dai, S., Yin, Z., Lu, H., Jia, R., Xu, J., Song, X., Li, L., Shu, Y. and Zhao, X. (2014). Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food Chem. Toxicol. 65:260-268.
  33. Zarrintab, M. and Mirzaei, R. (2017). Evaluation of some factors influencing on variability in bioaccumulation of heavy metals in rodents: Rombomys opimus and Rattus norvegicus from central Iran. Chemosphere. 169: 194-203.

Editorial Board

View all (0)