Utilization of boosted classification trees for the detection of cows with conception difficulties

DOI: 10.18805/ijar.B-1103    | Article Id: B-1103 | Page : 359-363
Citation :- Utilization of boosted classification trees for the detection of cows with conception difficulties.Indian Journal Of Animal Research.2021.(55):359-363
D. Zaborski, W. Grzesiak daniel.zaborski@zut.edu.pl
Address : Department of Ruminants Science, West Pomeranian University of Technology, Szczecin-71270, Poland.
Submitted Date : 1-02-2019
Accepted Date : 30-07-2019

Abstract

The present study is planned to apply boosted classification trees for the detection of cows with potential conception problems. Nine hundred and eighteen artificial insemination records from Polish Holstein-Friesian Black-and-White cows were included. Each record consisted of nine predictor variables. The output variable was a conception difficulty class (good or poor). Sensitivity, specificity and accuracy on the test set were 82.93%, 84.46% and 83.91%, respectively. The most influential predictors of conception difficulty included calving interval, gestation length, body condition score, fat and protein content and age. Boosted classification trees could be applied as an on-farm decision support tool to identify cows with conception problems.

Keywords

Artificial insemination Boosted trees Conception Dairy cows

References

  1. Bhat, F.A. and Bhattacharyya, H.K. (2012). Management of metritis in crossbred cattle of Kashmir using oxytetracycline, cephalexin and prostaglandin F2á. Indian J. Anim. Res., 46: 187–189. 
  2. Bhattacharyya, H.K. and Hafiz, A. (2009). Treatment of delayed ovulation in dairy cattle. Indian J. Anim. Res., 43: 209–210.
  3. Fenlon, C., O’Grady, L., Doherty, M.L., Dunnion, J., Shalloo, L., Butler, S.T. (2017). The creation and evaluation of a model predicting the probability of conception in seasonal-calving, pasture-based dairy cows. J. Dairy Sci., 100: 5550–5563. DOI: 10.3168/ jds.2016-11830.
  4. Friedman, J.H. (2002) Stochastic gradient boosting. Comput. Stat. Data Anal., 38: 367–378. DOI: 10.1016/S0167-9473(01)00065-2.
  5. Grzesiak, W., Zaborski, D., Sablik, P., Pilarczyk, R. (2011). Detection of difficult conceptions in dairy cows using selected data mining methods. Anim. Sci. Pap. Rep., 29: 293–302.
  6. Grzesiak, W., Zaborski, D., Sablik, P., ¯ukiewicz, A., Dybus, A., Szatkowska, I. (2010). Detection of cows with insemination problems using selected classification models. Comput. Electron. Agric., 74: 265–273. DOI: 10.1016/j.compag.2010.09.001.
  7. Hempstalk, K., McParland, S., Berry, D.P. (2015). Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows. J. Dairy Sci., 98: 5262–5273. DOI: 10.3168/jds.2014-8984.
  8. Keskin, M., Kurtoglu, S., Kendirci, M., Atabek, M.E., Yazici, C. (2005). Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics, 115: e500–e503. DOI: 10.1542/peds.2004-1921.
  9. Klementová, K., Filipèík, R., Hošek, M. (2017). The effect of ambient temperature on conception and milk performance in breeding Holstein cows. Acta Univ. Agric. Silvic. Mendel. Brun., 65: 1515–1520. DOI: 10.11118/actaun201765051515.
  10. Mokhtari, M.S., Moradi Shahrbabak, M., Nejati Javaremi, A., Rosa, G.J.M. (2016). Relationship between calving difficulty and fertility traits in first-parity Iranian Holsteins under standard and recursive models. J. Anim. Breed. Genet., 133: 513–522. DOI: 10.1111/jbg.12212.
  11. Shahinfar, S., Page, D., Guenther, J., Cabrera, V., Fricke, P., Weigel, K. (2014). Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms. J. Dairy Sci., 97: 731–742. DOI: 10.3168/jds.2013-6693.
  12. Wang, J., Berzins, K., Hicks, D., Melkers, J., Xiao, F., Pinheiro, D. (2012). A boosted-trees method for name disambiguation. Scientometrics, 93: 391–411. DOI: 10.1007/s11192-012-0681-1.
  13. Yao, C., Spurlock, D.M., Armentano, L.E., Page, C.D., VandeHaar, M.J., Bickhart, D.M., Weigel, K.A. (2013). Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle. J. Dairy Sci., 96: 6716–6729. DOI: 10.3168/jds.2012-6237.
  14. Zaborski, D., Grzesiak, W., Kotarska, K., Szatkowska, I., Jedrzejczak, M. (2014). Detection of difficult calvings in dairy cows using boosted classification trees. Indian J. Anim. Res., 48: 452-458. DOI: 10.5958/0976-0555.2014.00010.7.

Global Footprints