Loading...

Effects of negative pressure applied before storage (liquid storage, 17°C) on boar semen quality and fertilization ability

DOI: 10.18805/ijar.B-1042    | Article Id: B-1042 | Page : 1201-1205
Citation :- Effects of negative pressure applied before storage (liquid storage, 17°C) on boar semen quality and fertilization ability.Indian Journal of Animal Research.2020.(54):1201-1205
Jingchun, LI, Qi, LI, Yanbing, LI, Guosheng, Wei, Dongbo, Sun elj863@163.com
Address : College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China.
Submitted Date : 22-09-2018
Accepted Date : 25-01-2019

Abstract

The present study was aimed to investigate the effects of negative pressure applied before storage on the quality and fertilization ability of boar semen. Boar semen samples were collected and pooled, and diluted with Modena solution containing 0.4% (w/v) of bovine serum albumin. Negative pressure was applied for 2–5 min using a vacuum pump with a barometer. The pressure applied were 0 (Control), -0.02 MPa (P200), -0.04 MPa (P400), and -0.08 MPa (P800). The sperm motility, acrosome integrity and sperm fertilizing ability were evaluated. Application of –0.04 MPa improved the sperm motility, acrosome integrity and fertilizing ability, compared with the other groups. The sperm motility and acrosome integrity decreased with increasing storage time in vitro. After 5 days, the sperm motility and acrosome integrity of the P400 group were all higher than those of the other groups (P < 0.05). The cleavage rate (64.5% ± 2.4%) and blastocyst development rate (33.9% ± 2.8%) for semen stored for 7 days were similar to those of fresh semen. In conclusion, application of –0.04 MPa before liquid storage at 17°C can improve the quality and fertilization ability of boar semen.

Keywords

Boar semen Fertility Negative pressure Sperm quality.

References

  1. Aboagla, E.M., and Terada, T. (2003). Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biol. Reprod., 9:1245–1250.
  2. Bateni, Z., Azadi, L., Tavalaee, M., Kiani-Esfahani, A., Fazilati M., Hossein Nasr-Esfahani. M. (2014). Addition of Tempol in semen cryopreservation medium improves the post-thaw sperm function. Syst. Biol. Reprod. Med., 60(4): 245–250. 
  3. Casali, R., Silva, L.G., Arcego, C.C., Mozzaquatro, F.D., Mezzalira, A. (2014). Negative pressure in the pre-freezing of ram semen. Acta Scientiae Veterinariae, 42:1–6.
  4. Chen, P.Y., Hsu, C.C., Yang, K.C., Wu, C.C., Wang, C.L. (2015). The effects of negative pressure treatment on the extracellular matrix gene expression and protein production of fibroblasts. Process Biochem., 50:1662–1668.
  5. Fantinati, P., Zannoni, A., Bernardini, C., Forni, M., Tattini, A., Seren, E., Bacci, M.L. (2009). Evaluation of swine fertilisation medium (SFM) efficiency in preserving spermatozoa quality during long-term storage in comparison to four commercial swine extenders. Animal., 3: 269–3274.
  6. Freking, B.A., Purdy, P.H., Spiller, S.F., Welsh, C.S., Blackburn, H.D. (2012). Boar sperm quality in lines of pigs selected for either ovulation rate or uterine capacity. J. Anim. Sci., 90: 2515–2523.
  7. Funahashi, H., and Day, B.N. (1997). Advances in in vitro production of porcine embryos. J. Reprod. Fertil., 52: 271–283.
  8. Grant, S.A., Long, S.E., Parkinson, T.J. (1994). Fertilizability and structural properties of boar spermatozoa prepared by Percoll gradient centrifugation. J. Reprod. Fertil., 100: 477–483.
  9. Huo, L.J., Ma, X.H., Yang, Z.M., (2002). Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage. Theriogenology, 58: 349–1360.
  10. Ikeda, H., Kikuchi, K., Noguchi, J., Takeda, H., Shimada, A., Mizokami, T., Kaneko, H. (2002). Effect of preincubation of cryopreserved porcine epididymal sperm. Theriogenology, 57:1309–1318.
  11. Kumaresan, A., Kadirvel, G., Bujarbaruah, K.M., Bardoloi, R.K., Das, A., Kumar, S., Naskar, S. (2009). Preservation of boar semen at 18 °C induces lipid peroxidation and apoptosis like changes in spermatozoa. Anim. Reprod. Sci., 110: 162–171.
  12. Lalrintluanga, K., Deka, B.C., Nath, K.C., Sarmah, B.C., Biswas, R.K. (2014). Effect of heterospermy on the quality of spermatozoa during preservation of boar semen at 18°C. Indian J. Anim. Res., 48: 201-203.
  13. Li, J.C., Li, Q., Wei, G.S., Zhang, J.B., Li, Y.B. (2018). Effects of negative pressure on boar semen quality during liquid storage at 17°C. Indian J. Anim. Res., 52(8):1146-1150.
  14. Martin-Hidalgo, D., Llera, A.H.D., Henning, H., Wallner, U., Waberski, D., Bragado, M.J., Gil, M.C., Garcia-Marin, L.J. (2013). The effect of resveratrol on the quality of extended boar semen during storage at 17ºC. J. Agr. Sci., 5: 231–242.
  15. Petters, R.M., Wells K.D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl., 48: 61–73.
  16. Pribenszky, C., Horváth, A., Végh, L., Huang, S. Y., Kuo, Y. H., Szenci, O. (2011). Stress preconditioning of boar spermatozoa: a new approach to enhance semen quality. Reprod. Domest. Anim., 46 (Supplement s2):26–30.
  17. Sonigo, C., and Grynberg, M. (2014). In vitro oocyte maturation for female fertility preservation. Gynécologie Obstétrique & Fertilité., 42: 657–660.
  18. Suzuki, K., Mori, T., Shimizu, H. (1996). Effect of the Duration of Preincubation on the Ability of Pig Spermatozoa to Penetrate Oocytes in vitro. Nihon Chikusan Gakkaiho., 67: 24–27.
  19. Zhang, X., Yan, G., Hong, J., Su, Z., Yang, G., Li, Q., Hu, J. (2015). Effects of bovine serum albumin on boar sperm quality during liquid storage at 17°C. Reprod. Domest. Anim., 50: 263–269.
  20. Zhang, X.G., Li, H., Wang, L., Hao, Y.Y., Liang, G.D., Ma, Y.H., Hu, J.H. (2017). The effects of different levels of superoxide dismutase in modena on boar semen quality during liquid preservation at 17°C. Anim. Sci. J., 88(1): 55–62.
  21. Zhang, X.G., Liu, Q., Wang, L.Q., Yang, G. S., Hu, J.H. (2016). Effects of glutathione on sperm quality during liquid storage in boars. Anim. Sci. J., 87: 1195–1201.

Global Footprints