Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 7 (july 2020) : 841-845

Calcium and b-hydroxybutyrate serum concentrations in early postpartum of Jersey cows

Juan Manuel Pinos-Rodríguez, Belisario Domínguez-Mancera, Francisco Indalecio Juarez-Lagunes, Manuel Barrientos-Morales
1School of Veterinary Medicine and Animal Science, University Of Veracruz, Veracruz, Mexico. Miguel Ángel De Quevedo S/N Esquina Yáñez, Colonia Unidad Veracruzana, Veracruz, México. CP: 91710.
Cite article:- Pinos-Rodríguez Manuel Juan, Domínguez-Mancera Belisario, Juarez-Lagunes Indalecio Francisco, Barrientos-Morales Manuel (2019). Calcium and b-hydroxybutyrate serum concentrations in early postpartum of Jersey cows. Indian Journal of Animal Research. 54(7): 841-845. doi: 10.18805/ijar.B-1036.
The experiment was conducted to determine serum [Ca2+], â-hydroxybutyrate in blood, milk and urine during peripartum and urinary pH. Ninety Jersey cows were selected during their last month of pregnancy. Five days before calving, at calving and 12, 24, 48 and 72 h after calving blood samples were taken. Ca2+, and â-hydroxybutyrate (â-HB) in blood serum, milk and urine were determined. Correlations and one-way ANOVA were used for the analyses. Calcium and glucose (mmolL-1) decreased throughout the peripartum: Ca2+ [2.65 to 2.31±0.11 (p<0.05)]; glucose [3.74 to 3.11±0.26 (p<0.05)]. NEFA, blood â-HB, urine â-HB and milk â-HB (mmolL-1) increased over time: NEFA [0.36 to 0.45±0.05 (p<0.05)]; blood â-HB [0.69 to 1.29±0.07 (p<0.05)]; urine â-HB [0.10 to 0.37±0.09 p<0.05)]; milk â-HB [0.09 to 0.18±0.04 p<0.05)]. Urine pH did not change: 7.31 to 6.95±0.34 (p>0.05). No correlation was found between b-HB in blood and b-HB in milk. b-HB in blood and milk did not have a functional relationship in Jersey cows that was useful in diagnosing metabolic disorders. 
  1. Andresen, H.S. (2001). Vacas secas y en transición. Rev. Inv. Vet. Perú. 12: 36-48.
  2. Bauman, D.E., Mather, I.H., Wall, R.J., and Lock, A.L. (2006). Major advances associated with the biosynthesis of milk. J. Dairy. Sci. 89: 1235-1243.
  3. Beaudeau, F., Seegers, H., Ducrocq, V., Fourichon, C., and Bareille, N. (2000). Effect of health disorders on culling in dairy cows: a review and a critical discussion. Ann. Zootech. 49: 293-311. 
  4. Berge, A.C., and Vertenten, G. (2014). A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. J Dairy Sci 97: 2145-2154.
  5. Chapinal, N., Carson, M., Duffield, T.F., Capel, M., Godden, S., Overton, M., Santos, J.E.P., LeBlanc, S.J. (2011). The association of serum metabolites with clinical disease during the transition period. J. Dairy Sci. 94: 4897–4903
  6. Chuang, X., Tai-yu, S., Yuan, Y., Hong-jiang, Y., Cheng, X. and Hong-you, Z. (2016). Blood clinicopathological differences between type I and II ketosis in dairy cows. Indian J. Anim. Res, 50: 753-758.
  7. Clark, C.E.F., Fulkerson, W.J., Nandra, K.S., Barchia, I. and Macmillan, K.L. (2005). The use of indicators to assess the degree of mobilization of body reserves in dairy cows in early lactation on a pasture-based diet. Livest. Sci. 3: 199-211.
  8. Duffield, T. (2000). Subclinical ketosis in lactating dairy cattle. Vet. Clin. North. Am. Food. Anim. Pract. 16: 231-252.
  9. Enjalbert, F., Nicot, M.C., Bayourthe, C., Moncoulon, R. (2001). Ketone bodies in milk and blood of dairy cows: relationship between concentrations and utilization for detection of subclinical ketosis. J. Dairy. Sci. 84: 583-589.
  10. Espino, L., Suárez, L., Santamarina, G., Goicoa, A., Fidalgo, L.E. (2005). Utilización de Sales anionicas en la prevención de la paresia puerperal hipocalcémica. Arch. Med. Vet. 37: 7-13.
  11. Geishauser, T., Leslie, K., Tenhag, J., Bashiri, A. (2000). Evaluation of eight cow side ketone test in milk for detection of subclinical ketosis in dairy cows. J. Dairy. Sci. 83: 296-299.
  12. Gilliund, P., Reksen, O., Gröhn, Y.T., Karlberg, K. (2001). Body condition related to ketosis and reproductive performance in Norwegian dairy cows. J. Dairy. Sci. 84: 1390-1396.
  13. Goff, J.P., and Horst, R.L. (2003). Role of acid-base physiology on the pathogenesis of parturient hypocalcaemia (Milk fever)-the DCAD theory in principal and practice. Act. Vet. Scand. 97: 51-56. 
  14. Goff, J.P., Kimura, K. and Horst, R.L. (2002). Effect of mastectomy on milk fever, energy, and vitamins A, E, and â-carotene status at parturition. J. Dairy. Sci. 85:1427-1436.
  15. Goff, J.P. (2000). Pathophysiology of calcium and phosphorus disorders. Vet. Clin. North. Am.16: 319-337.
  16. Hesam, A.S., Stephen, J., LeBlanc, S.J., Leslie, K.E., Duffield, T.F. (2011). Metabolic predictors of post-partum disease and culling risk in dairy cattle. The Veterinary Journal. 188: 216-220
  17. Holtenius, P. and Holtenius K. (1996). New aspects of ketone bodies in energy metabolism of dairy cows: a review. Journal of Veterinary Medicine Series A 43: 579-587.
  18. Ingvartsen, K.L., Dewhurst, R.J., Friggens, N.C. (2003). On the relationship between lactational performance and health: is it yield or metabolic imbalance that causes production diseases in dairy cattle? Livest. Prod. Sci. 83: 277-308.
  19. Le Blanc, S.J., Leslie, K.E., and Duffield, T.F. (2005). Metabolic predictors of displaced abomasums in dairy cattle. J. Dairy. Sci. 88: 159-170.
  20. Martinez, N., Risco, C.A., Lima, F.S., Bisinotto, R.S., Greco, L.F., Ribeiro, E.S., Maunsell, F., Galvão, K., Santos, J.E.P. (2012). Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease. J. Dairy. Sci. 95: 7158–7172
  21. Melendez, P.A., Donovan, C.A., Risco, C.A., and Goff, J.P. (2004). Plasma mineral and energy metabolite concentrations in dairy cows fed an anionic prepartum diet that did or did not have retained fetal membranes after parturition. Am. J. Vet. Res. 65: 1071-1076.
  22. Melendez, P.A., Donovan, C.A., Risco, M.B., Hall, R.L., Goff, J.P. (2002). Metabolic response of transition Holstein cows fed anionic salts and supplemented at calving with calcium and energy. J. Dairy. Sci. 85: 1085-1092.
  23. Oetzel, G.R. (2000). Management of dry cows for the prevention of milk fever and other mineral disorders. Vet. Clin. North. Am. Food. Anim. Pract. 16: 369-386.
  24. Oikawa, S. and Oetzel, G.R. (2006). Decreased insulin response in dairy cows following a four-day fast to induce hepatic lipidosis. J. Dairy Sci. 89: 2999-3005.
  25. Ospina, P.A., Nydam, D.V., Stokol, T., Overton, T.R. (2010). Associations of elevated nonesterified fatty acids and â-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J. Dairy Sci., 93: 1596–1603
  26. Overton, T.R., and Waldron, M.R. (2004). Nutritional management of transition dairy cows: Strategies to optimize metabolic health. J. Dairy. Sci. 87: 105-119.
  27. Piepenbrink, M.S., and Overton, T.R. (2000). Liver metabolism and production of periparturient dairy cattle fed rumen-protected choline. J. Dairy. Sci. 83:1722-1733.
  28. Sakha, M., Ameri, M., and Rohbakhsh, A. (2006). Changes on blood - hydroxybutyrate and glucose concentrations during dry and lactation periods in Iranian Holstein cows. Comp. Clin. Pathol. 15: 221-226.
  29. Salgado, H.E.G., Bouda, J., Ávila, G.J., Navarro, H.J.A. (2009). Efecto de la administración de sales de calcio y precursores de glucosa sobre calcio sérico y cuerpos cetónicos en vacas lecheras posparto. Vet. Méx. 40: 17-26.
  30. Samad, E.H., Goff, J.P., and Khammash, M. (2002). Calcium homeostasis and parturient hypocalcemia: An integral feedback perspective. J. Theor. Biol. 214:17-29.
  31. Schultz, L.H., Mayland, H.F., Emerick, R.J. (1998). Problemas relacionados con la nutrición. El rumiante. Fisiología Digestiva y Nutrición.1ª Edición. [En: C. D. Church (Ed.)]. Zaragoza, España, Acribia. p 567-586.
  32. Suthar, V.S., Canelas-Raposo, J., Deniz, A., Heuwieser, W. (2013). Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 96: 2925–2938
  33. Walsh, R.B., Walton, J.S., Kelton, D.F., Le Blanc, S.J., Leslie, K.E., Duffield, T.F. (2007). The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. J. Dairy Sci. 90: 2788–2796
  34. Xiao, X., Xu, C., Shu, S., Xia, C., Wang, G., Bai, Y., Wu, L. and Zheng, J. (2017). Critical thresholds of Ion Concentration in Plasma for Hypocalcemia prediction in dairy cows using receiver operating characteristic (ROC) analysis. Indian J. Anim. Res. 00: xxx-xxx. 10.18805/ijar.v0iOF.8476.
  35. Yildiz, A. and Erisir, Z. (2016). Effect of propylene glycol on fertility of postpartum dairy cows experiencing seasonal heat stress. Indian J. Anim. Res. 50: 27-30
  36. Zhigang, Z., Guowen, L., Xiaobing, L., Zhe, W., Tao, K., Naisheng, Z. and Chanming, A. (2009). â-hydroxybutyrate, glucose, calcium, phosphorus, and vitamin C concentrations in blood of dairy cows with subclinical ketosis during the early lactation. Bull. Vet. Inst. Pulawy. 53, 71-74. 

Editorial Board

View all (0)