Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.43

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 2 (february 2020) : 168-172

Biochemical investigation of an experimentally induced metabolic syndrome in rats

N.G. Mustafa, M.K. Hasan
1Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine. University of Mosul, Mosul, Iraq.
Cite article:- Mustafa N.G., Hasan M.K. (2019). Biochemical investigation of an experimentally induced metabolic syndrome in rats. Indian Journal of Animal Research. 54(2): 168-172. doi: 10.18805/ijar.B-1028.
Metabolic syndrome (MS) is a complex condition characterized by insulin resistance, hyperglycemia, dyslipidemia, and obesity. This project aims to induce MS in rat and then a demonstration of the main biochemical parameters. In male, Sprague-Dawley rats, MS has been prompted suitably and relatively by fast (six weeks) approach through a high fructose in drinking water (40%). It has been found that serum urea, creatinine, and total bilirubin raise in MS significantly. Moreover, dyslipidemia has arbitrated via some considerable lipid profile deviations. In addition, BMI, blood glucose, and insulin monitoring evidently ensure achievement of MS. It is concluded that a well-established rat model of MS could be employed by a 40% fructose in drinking water.
  1. Al-Agele, F.L. and Khudiar, K.K. (2016). Effect of acrylamide and fructose on some parameters related to metabolic syndrome in adult male rats. Iraqi J. Vet. Med. 40:125-135. 
  2. Bezerra, A.M. and de Oliveira, D.M. (2013). Metabolic syndrome: molecular basis and reasons for interaction with obesity. Demetra: Food Nutr. Health, 8: 63-76.
  3. Chiang, J.K., Lai, N.S., Chang, J.K., Koo, M. (2011). Predicting insulin resistance using the triglyceride-to-high-density lipoprotein cholesterol ratio in Taiwanese adults. Cardiovasc. Diabetol. 10:93. 
  4. Farag, H.A.M., Hosseinzadeh Attar, M.J., Muhammad, B.A., Esmaillzadeh, A., El Bilbeisi, A.H. (2018). Comparative effects of vitamin D and vitamin C supplementations with and without endurance physical activity on metabolic syndrome patients: a randomized controlled trial. Diabetol. Metabol. Synd. 10: 80. 
  5. Hsieh, C.C., Liao, C.C., Liao, Y.C., Hwang, L.S., Wu, L.Y., Hsieh, S.C. (2016). Proteomic changes associated with metabolic syndrome in a fructose-fed rat model. J Food Drug Analysis, 24: 754-761.
  6. Kennedy, A.J., Ellacott, A.K., King, V.L., Hasty, A.H. (2010). Mouse model of the metabolic syndrome. Dis. Model Mech. 3: 156-166.
  7. Lawan, A., Min, K., Zhang, L., Canfran-Duque, A., Jurczak, M.J., Nie, Y., Gavin, T.P.,et al. (2018). Skeletal Muscle–Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node that Regulates Obesity-Induced Insulin Resistance. Diabetes, 67    (4): 624-635.
  8. Martinez, A.G., Lopez-Espinoza, A., Lopez-Uriarte, P.J. Beltran-Miranda, C.P., et al. (2018). A laboratory environment previously associated with a palatable diet can result in overfeeding in rats. Indian J Anim. Res. 52(9): 1267-1270. 
  9. McCracken, E., Monaghan, M., Sreenivasan, S. (2018). Pathophysiology of the metabolic syndrome. Clin. Dermatol. 36: 14-20. 
  10. Mehta, N.N., McGillicuddy, F.C., Anderson, P.D., Hinkle, C.C., Shah, R. (2010). Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes, 59: 172–181.
  11. Meyer, T.W. and Hostetter, T.H. (2007). Uremia. N. Engl. J. Med. 357: 1316-1325.
  12. Morgan, R., Keen, J., McGowan, C. (2015). Equine metabolic syndrome. Vet. Record. 177(7): 173-179. 
  13. Nolan, C.J., Ruderman, N.B., Kahn, S.E., Pederson, O., Prentki, M. (2015). Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes, 64(3): 673-686. 
  14. Novelli, E. L., Diniz, Y. S., Galhardi, C. M., Ebaid, G.M., Rodrigues, H.G., Mani, F., et al. (2007). Anthropometrical parameters and markers of obesity in rats. Lab. Animals, 41: 111–119.
  15. NRC: National Research Council. (1995). Nutrient Requirements of Laboratory Animals. 3rd rev. ed. National Academy Press, Washington DC.
  16. Nutan, and Kochar, G.K. (2014). Impact of diet regime at naturopathy centers on the nutritional status of non-insulin dependent diabetes mellitus (NIDDM) patients. Asian J Dairy Food Res. 33 (1): 62 – 66.
  17. Pampori, Z.A., Raies Haq, M., Ganie, A.A., Singh, A. K. (2012). Physiology, metabolism and nutritional requirements in early lactation to augment milk production in cattle. A review. Agri. Reviews. 33 (3): 181-191.
  18. Poudyal, H., Campbell, F., Brown, L. (2010). Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-    high fat-fed rats. J Nutr. 140: 946–953.
  19. Reaven, G.M. (1988). Role of insulin resistance in human disease. Diabetes, 37: 1595-1607.
  20. Rodwell, V.W., Bender, D.A., Botham, K.M., Kennelly, P.J., Weil, P.A. (2015). Harper’s Illustrated Review of Biochemistry. (30th Edn). McGraw-Hill education. USA. pp. 832.
  21. Sears, B. and Perry, M. (2015). The role of fatty acids in insulin resistance. Lipids Health Dis. 14: 121. 
  22. Sweet, S.A. and Grace-Martin, K.A. (2011). Data analysis with SPSS. A first course in applied statistics. (4th Edn.). Pearson Pub Ltd. USA. pp. 288. 
  23. Sudarsanam, P., Shanmugam, K.R., Mallikarjuna, K., Sathyavelu Reddy, K. (2010). Impact of exercise training on carbohydrate metabolic profiles in the kidney tissue of male albino rats. Indian J Anim. Res. 44 (1): 1-8. 
  24. Tvarijonaviciute, A., Ceron, J.J., Holden, S.L., Cuthbertson, D.J., Biourge, V., Morris, P.J., German, A.J. (2012). Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome. BMC Vet. Res. 8:147-155. 
  25. Yokozawa, T., Cho, E.J., Sasaki, S., Satoh, A., Okamoto, T., Sei, Y. (2006). The protective role of Chinese prescription Kangen-karyu extract on diet-induced hypercholesterolemia in rats. Biol. Pharmaceut. Bulletin, 29: 760-765.
  26. Wong, S.K., Chin, K.Y., Suhaimi F.H., Fairus, A., Ima-Nirwana, S. (2016). Animal model of metabolic syndrome. Nutr. Metabol. 30: 65.
  27. Zhou, X., Han, D., Xu, R., Li, S., Wu, H., Qu, C., Wang, F., Wang, X., Zhao, Y. (2014). A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet. PLOS One, 9: e115148. 

Editorial Board

View all (0)