Bhartiya Krishi Anusandhan Patrika, volume 35 issue 1-2 (march-june 2020) : 75-78

Importance of plant growth promoting rhizobacteria (PGPR) in agriculture: A Review

Tabish Akhtar, Shubham Kumar, Sukhdeo Kumar, M.R. Meena
1<div style="text-align: justify;">Banaras Hindu University, Varanasi-221 005, Uttar Pradesh.&nbsp;</div>
  • Submitted22-05-2020|

  • Accepted08-07-2020|

  • First Online 10-09-2020|

  • doi 10.18805/BKAP200

Cite article:- Akhtar Tabish, Kumar Shubham, Kumar Sukhdeo, Meena M.R. (2020). Importance of plant growth promoting rhizobacteria (PGPR) inagriculture: A Review. Bhartiya Krishi Anusandhan Patrika. 35(1): 75-78. doi: 10.18805/BKAP200.
The growth of plants promoting rhizobacteria (PGPR) has gained widespread importance in agriculture. These are beneficial bacteria found in nature that live actively in plant roots and improve plant growth and increase agricultural productivity.. (PGPR) promoting plant growth shows an important role in the sustainable agricultural industry. The increasing demand for crop production is a major challenge nowadays, with a significant lack of use of synthetic chemical fertilizers and pesticides. The use of PGPR has proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through direct or indirect mechanisms. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and dissolving nutrients for easy uptake by plants. Furthermore, PGPRs show synergistic and antagonistic interactions with microorganisms within the rhizosphere and in bulk soils, which indirectly increases plant growth rates. There are several bacteria species that act as PGPR. This review summarizes the methodology of PGPR as a bio-fertilizer in agriculture. 
  1. Abbas, Z.P., Saleh, R.N. and Rahmani, A.H. et al. (2010). Acta Physiol. Plant. 32: 281-    288. 
  2. Adesemoye, A., Torbert, H. and Kloepper, J. (2009). Plant growth-promoting Rhizo- -bacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58 (Suppl 4): 921-929. 
  3. Adesemoye, A.O., Obini, M. and Ugoji, E.O. (2008). Braz. J. Microbiol. 39: 423-426. 
  4. Ahmad, F., Ahmad, I. and Khan, M.S. (2005). Indole Acetic Acid Production by the Indigenous Isolates of Azotobacter and Fluorescent Pseudomonas in the Presence and absence of Tryptophan. Turkish Journal of Biology, 29: 29-34. 
  5. Ahmad, F., Ahmad, I., Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbial Research, 163 (Suppl 2): 173-81. 
  6. Akhtar, A., Hisamuddin, R.M.I., Abbasi and Rushda, S. (2012). Plant growth promoting rhizobacteria: An overview. Journal of Natural Product and Plant Resources. 2: 19-31. 
  7. Aly, H, Kamalay, J, Walter, N, Okubara, P.A. and Taylor, C.G. (2007). Characterization of the Pseudomonas genus of bacteria for plantparasitic nematode contro L ASM Conference. 
  8. Anjum, M.A., Sajjad, M.R., Akhtar, N., Qureshi, M.A., Iqbal, A., Jami, A.R., Mahmud-ul-    Hasan. (2007). Response of cotton to plant growth promoting Rhizobacteria (PGPR) inoculation under different levels of nitrogen. Journal of Agricultural Research, 45 (Suppl 2): 135-143. 
  9. Antoun, H. and Kloepper, J.W. (2001). Plant growth promoting rhizobacteria (PGPR). In Encyclopedia of Genetics. Academic Press, New York. Edited by Brenner S, Miller JH, 1477–1480. 
  10. Armada, E.; Portela, G.; Roldan, A.; Azcon, R. Combined use of beneficial soil micro- -organism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 2014, 232: 640–    648. [Google Scholar] [CrossRef]
  11. Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P. Advances in plant growth- promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). (A Marschner Review). Plant Soil 2014, 378: 1–33. [Google Scholar] [CrossRef]
  12. Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B 2013, 368. [Google Scholar] [CrossRef] [PubMed]
  13. Calvo, P.; Nelson, L.M.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383: 3–41. [Google Scholar] [CrossRef]
  14. Choudhary, D.K.; Sharma, K.P.; Gaur, R.K. Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol. Lett. 2011, 33: 1905–1910. [Google Scholar] [CrossRef] [PubMed]
  15. Dey, R.; Pal, K.K.; Bhatt, D.M.; Chauhan, S.M. Growth promotion and yield enhancement of peanut (Arachis hypogeal L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 2004, 159: 371–394. [Google Scholar] [Cross Ref] [PubMed]
  16. Draft U.S. Greenhouse Gas Inventory Report: 1990–2014. Available online: https://    www3.epa.gov/climatechange/ghge missions/usinventoryreport.html (accessed on 23 March 2016).
  17. Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions and potential solutions. Science 2008, 320: 889–892. [Google Scholar] [CrossRef] [PubMed].
  18. Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications; Hindawi Publishing Corporation, Scientifica: Waterloo, Canada, 2012. [Google Scholar]
  19. Martinez-Viveros, O.; Jorquera, M.A.; Crowley, D.E.; Gajardo, G.; Mora, M.L. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–    319. [Google Scholar] [CrossRef]
  20. Nakkeeran, S.; Fernando, W.G.D.; Siddiqui, Z.A. Plant growth promoting rhizobacteria formulations and its scope in commercia- -lization for the management of pests and dideases. In PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 257–296. [Google Scholar].

Editorial Board

View all (0)