Bhartiya Krishi Anusandhan Patrika, volume 33 issue 1 & 2 (march & june 2018) : 120-127

Forecasting Sugarcane yield of India using ARIMA-ANN hybrid model

Mrinmoy Ray, R. S. Tomar, Ramasubramanian V., K N Singh
1<p>ICAR-IASRI, New Delhi-110012</p>
  • Submitted|

  • First Online |

  • doi

Cite article:- Ray Mrinmoy, Tomar S. R., V. Ramasubramanian, Singh N K (NaN). Forecasting Sugarcane yield of India using ARIMA-ANN hybrid model . Bhartiya Krishi Anusandhan Patrika. 33(1): 120-127. doi: undefined.

Sugarcane is one of the main cash crops of India hence forecasting sugarcane yield is vital for proper planning. Till date Autoregressive integrated moving average (ARIMA) model is a stand out amongst the most main stream approach for sugarcane yield forecasting. Recent research activity reveals that hybrid model improves the accuracy of forecasting when contrasted with the individual model. Along these lines, in this study, ARIMA-ANN hybrid model was utilized for forecasting sugarcane yield of India. The hybrid model was compared with ARIMA approach. Empirical results clearly reveal that the forecasting accuracy of the hybrid model is superior to ARIMA.


  1. Badmus, M.A., Ariyo, O.S. 2011. Forecasting cultivated areas and production of maize in Nigeria using ARIMA model. Asian Journal of Agricultural Science 3 (3): 171–176.

  2. Bajpai, P.K., and R. Venugopalan. 1996. Forecasting sugarcane production by time series modeling. Indian Journal of Sugarcane Technology 11(1): 61–65.

  3. Boken, V.K. 2000. Forecasting spring wheat yield using time series analysis: A case study for the Canadian prairies. Agricultural Journal 92(6): 1047–1053.

  4. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. 2009. Time Series Analysis: Forecasting and Control (3rd ed.), San Francisco: Holden-Day. 

  5. Broock, W., Scheinkman, J. A., Dechert, W. D., and LeBaron, B. 1996. A test for independence based on the correlation dimension, Econometric Review 15: 197–235.

  6. Cadenas, E. and Rivera, W.2010. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renewable Energy 35(12): 2732-2738.

  7. Díaz-Robles, L. A., Ortega, J. C., Fu, J. S., Reed, G. D., Chow, J. C., Watson, J. G. and Moncada-Herreraa, J. A. 2008. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmospheric Environment 42(35): 8331-8340.

  8. Faruk, D. Ö.2010. A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence 23(4): 586-594.

  9. Koutroumanidis, T., Ioannou, K. and Arabatzis, G. 2009. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model. Energy Policy 37(9), 3627-3634.

  10. Makridakis, S., Wheelwright, S.C., and Hyndman, R. J. 1998 .Forecasting: Methods and Applications (3rd ed.), Chichester: Wiley. 

  11. Prabakaran, K. and Sivapragasam, C. 2014. Forecasting areas and production of rice in India using ARIMA model. International Journal of Farm Science 4 (1): 99–106.

  12. Ray, M., Rai, A, V., Ramasubramanian and Singh K. N. 2016. ARIMA-WNN hybrid model for forecasting wheat yield time series data. Journal of the Indian Society of Agricultural Statistics, 70(1): 63-70.

  13. Ray, M., Rai, A., Singh, K. N., V., Ramasubramanian and Kumar, A. 2017. Technology forecasting using time series intervention based trend impact analysis for wheat yield scenario in India. Technological Forecasting and Social Change 118: 128-133.

  14. Remus, W. and O’Connor, M.2001. Neural Networks for Time-Series Forecasting, New York: Springer.

  15. Saeed, N., A. Saeed, M. Zakria, and T.M. Bajwa. 2000. Forecasting of wheat production in Pakistan using ARIMA models. International Journal of Agricultural Biology 2(4): 352–353.

  16. Sarika, M., Iquebal, A., Chattopadhyay, C. 2011. Modelling and forecasting of pigeonpea (Cajanus Cajan) production using autoregressive integrated moving average methodology. Indian Journal of Agricultural Science 81 (6): 520–523.

  17. Suresh, K.K., Priya, S.R.K. 2011. Forecasting sugarcane yield of Tamilnadu using ARIMA models. Sugar Tech 13 (1): 23–26.

  18. Yaseen, M., M. Zakria, Islam-ud-din-Shahzad, M. Imran Khan, and M. Aslam Javed. 2005. Modeling and forecasting the sugarcane yield of Pakistan. International Journal of Agricultural Biology 7(2): 180–183.

  19. Zhang, G., Patuwo, B. E. and Hu, M. Y. 1998. Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14: 35-62.

  20. Zhang, G. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159–175. 

Editorial Board

View all (0)