Loading...

The Effect of Intercropping of Lablab (Lablab purpureus L.) and Cowpea (Vigna unguiculata L.) at Different Planting Densities on in vitro and in sacco Dry Matter Digestibility of Napier Grass (Pennisetum purpureum)

DOI: 10.18805/ag.DF-390    | Article Id: DF-390 | Page : 249-259
Citation :- The Effect of Intercropping of Lablab (Lablab purpureus L.) and Cowpea (Vigna unguiculata L.) at Different Planting Densities on in vitro and in sacco Dry Matter Digestibility of Napier Grass (Pennisetum purpureum).Agricultural Science Digest.2022.(42):249-259
Negasu Gamachu Dinsa, Kassahun Desalegn Yalew negasugamachu@gmail.com
Address : Oromia Agricultural Research Institute (IQQO), Haro Sabu Agricultural Research Centre, Haro Sabu, Oromia, Ethiopia.
Submitted Date : 30-07-2021
Accepted Date : 15-12-2021

Abstract

Background: The advantage of intercropping is the more efficient utilization of the all available resources and the increased productivity compared with each sole crop of the mixture. If cowpea and Lablab intercropping with Napier grass its nutritional values was improved. 
Methods: The experimental design was factorial combination arrangement in randomized complete block design with three inter and intra spaces (1 m × 0.5 m, 0.75 m × 0.5 m, 0.5 m × 0.5 m) and intercropping with two tropical legumes. Treatments were T1= Pure Napier grass at 1 m row spacing, T2= Napier grass intercropped with lablab at 0.75 m row spacing, T3= Napier grass intercropped with cowpea at 0.5 m row spacing, T4= Napier grass intercropped with cowpea at 1 m row spacing, T5= Napier grass intercropped with lablab at 0.5 m row spacing, T6= Pure Napier grass at 0.75 m row spacing, T7= Napier grass intercropped with lablab at 1 m row spacing, T8= Napier grass intercropped with cowpea at 0.75 m row spacing, T9= Pure Napier grass at 0.5 m row spacing and totally nine treatments were used. Soil samples were collected before and after forage harvested. 
Result: Napier grass intercropped with lablab and cowpea at different planting densities had significant effect (P<0.05) on the in vitro dry and organic matter digestibility (IVDMD, IVOMD) and increased digestibility. The OM degradation constant was significantly different (P<0.05) but ‘ED’ was not and for DM degradation ‘c’ and ‘b’ were non-significant (P>0.05) for Napier grass intercropped with lablab and cowpea at different planting densities. In conclusion, Napier grass intercropped with lablab and cowpea at a planting density of 24 plants m-2 was better choice for high yield and forage quality.

Keywords

Cowpea Lablab Intercropping Napier grass Nutritive qualities Dry matter and organic matter digestibility In vitro In saco

References

  1. Abebe, M. (2007). Nature and Management of Acid Soils in Ethiopia. Haramaya University, Ethiopia.
  2. Albayrak, S., Güler, M. and Töngel, M. Ö. (2004). Effects of seed rates on forage production and hay quality of vetch-triticale mixtures. Asian Journal of Plant Sciences. 3: 752-756.
  3. Albayrak, S. and Türk, M. (2013). Changes in the forage yield and quality of legume-grass mixtures throughout a vegetation period. Turkish Journal of Agriculture and Forestry. 37: 139-147.
  4. Ansah, T., Osafo, E. and Hansen, H.H. (2010). Herbage yield and chemical composition of four varieties of Napier (Pennisetum purpureum) grass harvested at three different days after planting. Agricultural and Biology Journal of North America. 5: 923-929
  5. AOAC, (1990). Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. Virginia, USA.
  6. Assefa, G. and Ledin, I. (2001). Effect of variety, soil type and fertiliser on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stands and mixtures. Animal Feed Science and Technology. 92: 95-111.
  7. Asosa Meteorological Agency. (2017). Annual report of the Agro-metrological data of the Haro Sabu Agricultural Research Center, Oromia, Ethiopia.
  8. Bayble, T., Melaku, S. and Prasad, N. (2007). Effects of cutting dates on nutritive value of Napier (Pennisetum purpureum) grass planted sole and in association with Desmodium (Desmodium intortum) or Lablab (Lablab purpureus). Livestock Research for Rural Development. 19: 120-136.
  9. Chen, X. (1995). Neway Excel, an Excel application program for processing feed degradability data. International Feed Resources Unit. Rowet research institute. Aberdeen. United Kingdom.
  10. Demissie Negash G.A., Mengistu Urgie and Solomon Mengistu (2017). Chemical Composition and Nutritive Value of Oats (Avena sativa) Grown in Mixture with Vetch (Vicia villosa) with or Without Phosphorus Fertilization in East shoa Zone, Ethiopia. Academic Research Journal of Agricultural Science and Research. 5: 471-479.
  11. Ehlers, J. and Hall, A. (1997). Cowpea [Vigna unguiculata (L.) Walp.]. Field Crops Research. 53: 187-204.
  12. FAO, I. WFP (2015). The state of food insecurity in the world. Meeting the, 2015.
  13. FAO, I. and ISRIC, I. (2012). JRC: Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
  14. Fuller, D.Q. (2003). African Crops in Prehistoric South Asia: A Critical Review. Heinrich-Barth-Institute.
  15. Gwayumba, W., Christensen, D., Mckinnon, J. and Yu, P. (2002). Dry matter intake, digestibility and milk yield by Friesian cows fed two Napier grass varieties. Asian Australasian Journal of Animal Sciences. 15: 516-521.
  16. Haro Sabu Agricultural Research Center (HSARC). (2012). Annual report of Haro Sabu Agricultural Research center. Haro Sabu.
  17. Harris, K., Anderson, W. and Malik, R. (2010). Genetic relationships among napier grass (Pennisetum purpureum Schum.) nursery accessions using AFLP markers. Plant Genetic Resources. 8: 63-70.
  18. Hendricksen, R. and Minson, D. (1985). Lablab purpureus: A review. Herbage Abstracts. 55: 215-227.
  19. ILRI, (2010b). Napier or elephant grass ILRI 14984 (Pennisetum purpureum) for livestock feedon small-scale farms. Information leaflet on livestock feeds and feeding technologies for small-scale farmers. Fodder Adoption Project fodderadoption.wordpress.com.
  20. Islam, M., Saha, C., Sarker, N., Jalil, M. and Hasanuzzaman, M. (2003). Effect of variety on proportion of botanical fractions and nutritive value of different Napier grass (Pennisetum purpureum) and relationship between botanical fractions and nutritive value. Asian Australasian Journal of Animal Sciences. 16: 837-842.
  21. Kandel, R., Singh, H.P., Singh, B.P., Harris-Shultz, K.R. and Anderson, W.F. (2016). Assessment of genetic diversity in napier grass (Pennisetum purpureum Schum.) using microsatellite, single-nucleotide polymorphism and insertion-deletion markers from pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Molecular Biology Reporter. 34: 265-272.
  22. Kilcher, M. (1981). Plant development, stage of maturity and nutrient composition. Rangeland Ecology and Management/Journal of Range Management Archives. 34: 363-364.
  23. Klopfenstein, T.J., Mass, R., Creighton, K. and Patterson, H. (2001a). Estimating forage protein degradation in the rumen 1. Journal of Animal Science. 79: E208-E216.
  24. Klopfenstein, T. J., Mass, R., Creighton, K. and Patterson, H. (2001b). Estimating forage protein degradation in the rumen 1. Journal of Animal Science. 79: E208-E216.
  25. Ledgard, S., Giller, K. and Bacon, P. 1995. Atmospheric N2 fixation as an alternative N source. Nitrogen Fertilization in the Environment. 443-486.
  26. Legesse, G., Small, J.A., Scott, S. L., Kebreab, E., Crow, G.H., Block, H.C., Robins, C.D., Khakbazan, M. and Mccaughey, W.P. (2012). Bioperformance evaluation of various summer pasture and winter feeding strategies for cow-calf production. Canadian Journal of Animal Science. 92: 89-102.
  27. Littell, R.C., Stroup, W.W. and Freund, R.J. (2002). SAS for Linear Models, SAS institute.
  28. Liu, J., Zeng, Z., Jiao, L., Hu, Y., Wang, Y. and Li, H. (2006). Intercropping of different silage maize cultivars and alfalfa. Zuo wu xue bao, 32: 125-130.
  29. Mayer, L., Chandler, D. and Taylor, M. (1986). Lablab purpureus- A fodder crop for Botswana. Bulletin of Agricultural Research in Botswana. 5: 37-48.
  30. Midmore, D.J. (1993). Agronomic modification of resource use and intercrop productivity. Field Crops Research. 34: 357- 380.
  31. Mohammeda Semman, G.A., Mengistu Urgeb (2016). Effect of different spacing of Napier grass (Pennisetum purpureum) intercropped with or without Lablab (Lablab purpureus) on biomass yield and nutritional value of Napier grass. Scientific Journal of Pure and Appiled Sciences. 5: 496- 508.
  32. Morris, J.B. (2009). Morphological and reproductive characterization in hyacinth bean, Lablab purpureus (L.) Sweet germplasm with clinically proven nutraceutical and pharmaceutical traits for use as a medicinal food. Journal of Dietary Supplements. 6: 263-279.
  33. Mucheru-Muna, M., Pypers, P., Mugendi, D., Kung’u, J., Mugwe, J., Merckx, R. and Vanlauwe, B. (2010). A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Research. 115: 132-139.
  34. Mullen, C., Holland, J. and Heuke, L. (2003). AGFACTS: Cowpea, lablab and pigeon pea. Edited by Ann Munroe. NSW Agriculture, Orange.
  35. Njoka-Njiru, E., Njarui, M., Abdulrazak, S. and Mureithi, J. (2006a). Effect of intercropping herbaceous legumes with Napier grass on dry matter yield and nutritive value of the feedstuffs in semi-arid region of eastern Kenya. Agricultura Tropica et Subtropica. 39: 260-272.
  36. Oliveira, M.L.F., Daher, R., Figueiredo, E., De Amara Gravina, G., Da Silva, V.B., Rodrigues, E.V., Orio, Shimoya, A., Do Amaral Junior, A.T., Da Silva Menezes, B.R. and Dos Santos Rocha, A. (2014). Pre-breeding of elephant grass for energy purposes and biomass analysis in Campos dos Goytacazes-RJ, Brazil. African Journal of Agricultural Research. 9: 2743-2758.
  37. Orodho, A. (2006). The role and importance of Napier grass in the smallholder dairy industry in Kenya. Food and Agriculture Organization, (Rome) Retrieved August, 24: 2011.
  38. Ørskov, E. and Mcdonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science. 92: 499-503.
  39. Ørskov, E., Reid, G. and Mcdonald, I. (1981). The effects of protein degradability and food intake on milk yield and composition in cows in early lactation. British Journal of Nutrition. 45: 547-555.
  40. Owen, E. and Jayasuriya, M. (1989). Use of crop residues as animal feeds in developing countries. Research and Development in Agriculture. 6: 129-138.
  41. Pasquet, R.S. and Fotso, M. (1994). Répartition des cultivars de niébé [Vigna unguiculata (L.) Walp]. du Cameroun: influence du milieu et des facteurs humains. Journal d’agriculture traditionnelle et de botanique appliquée. 36: 93-143.
  42. Pinkerton, B., (2005). Forage quality. Clemson University Cooperative Extension Service. Forage fact sheet 2. Cooperative Extension Service, Clemson University.
  43. Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Sripichitt, P., Punsuvon, V., Vaithanomsat, P., Nakamanee, G. and Tudsri, S. (2013). Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of napiergrass (Pennisetum purpureum Schumach.) harvested 3-monthly in central Thailand. Journal of Sustainable Bioenergy Systems. 3: 107.
  44. Singh, B.P., Singh, H.P. and Obeng, E. (2013). 13 Elephantgrass. Biofuel Crops: Production, Physiology and Genetics. 271.
  45. Tadesse, T., Liben, M. and Asefa, A. (2012). Role of Maize (Zea mays L.)-Fababean (Vicia faba L.) intercropping planting pattern on productivity and nitrogen use efficiency of maize in northwestern Ethiopia highlands. International Research Journals. 2: 102-112.
  46. Tilley, J.M.A. and Terry, R.A. (1963). A two stage technique for in vitro digestion of forage crops. Journal of British Grassland Society. 18: 104.
  47. Tsubo, M., Walker, S. and Mukhala, E. (2001). Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Research. 71: 17-29.
  48. Valenzuela, H. and Smith, J. (2002b). Lablab, Cooperative Extension Service, College of Tropical Agriculture and Human Resources, University of Hawai’i at Mânoa.
  49. Van Soest, P.J. (1994). Nutritional ecology of the ruminant, Cornell University Press.
  50. Wijitphan, S., Lorwilai, P. and Arkaseang, C. (2009a). Effect of cutting heights on productivity and quality of King Napier grass (Pennisetum purpureum cv. King Grass) under irrigation. Pakistan Journal of Nutrition. 8: 1244-1250.
  51. Willey, R. (1979). Intercropping Its Importance And Research Needs Part 1. Competition and Yield Advantages Vol-32. MPKV; Maharastra.
  52. Woodard, K. and Prine, G. (1991). Forage yield and nutritive value of elephantgrass as affected by harvest frequency and genotype. Agronomy Journal. 83: 541-546.
  53. Yellamanda, R., Sankara, R.G., Reddy, Y. and Reddy, G. (2007). Principles of Agronomy, Kalyani Publishers.
  54. Yisehak, K. (2008). Effect of seed proportions of Rhodes grass (Chloris gayana) and white sweet clover (Melilotus alba) at sowing on agronomic characteristics and nutritional quality. Livestock Research for Rural Development. 20: 28.
  55. Zhu, H., Ahmidouch, A., Anklin, H., Arenhövel, H., Armstrong, C., Bernet, C., Boeglin, W., Breuer, H., Brindza, P. and Brown, D. (2001). Measurement of the Electric Form Factor of the Neutron through d→ (e→, e′ n) p at Q2= 0.5 (GeV/c)2. Physical Review Letters. 87: 081801.

Global Footprints