Comparison of Effectiveness of Arbuscular Mycorrhiza Fungi (AMF) on Vitis vinifera under Low Irrigation Conditions

DOI: 10.18805/ag.D-253    | Article Id: D-253 | Page : 119-128
Citation :- Comparison of Effectiveness of Arbuscular Mycorrhiza Fungi (AMF) on Vitis vinifera under Low Irrigation Conditions.Agricultural Science Digest.2021.(41):119-128
M. Fattahi, S. Nasrollahpourmoghadam, A. Mohammadkhani ma.fatahi67@gmail.com
Address : Department of Horticulture Science, Shahrekord University, Shahrekord, Iran.
Submitted Date : 1-04-2020
Accepted Date : 31-07-2020

Abstract

Background: Grapevine is an important perennial crop worldwide, consumed as fresh or dried (raisins) fruit. Grapevines are exposed to a variety of abiotic stresses during their growth. Water shortage is one of the primary stressors and severely restricts the development of the grape industry. Arbuscular mycorrhizal fungi (AMF), a kind of beneficial soil microorganism, can create a symbiotic association with plant roots forming arbuscular mycorrhizas (AMs), which play a role in the regulation of plant growth.
Methods: This research was accomplished in order to investigate the effect of 4 species mycorrhizal fungi on grapevine ‘Asgari’ cultivar under water stress conditions. We use of 3 irrigation regime that consist: 100% (as control), 70 and 40 % of field capacity. As well as, mycorrhizal treatments include: non-use of mycorrhizal (NM) and use of mycorrhiza (M) (Glomus mosseae, G. intraradices, G. etunicatum and G. verciform). 
Result: The results indicated that shoot and root dry weight, pigments (total chlorophyll and carotenoids), relative water content (RWC), P, Mg2+ and Ca2+ under water limitation decreased but electrolyte leakage (EL), proline and total soluble sugars (TSS) increased chlorophyll content, RWC and nutrient (P, K+ and Ca2+) in M plants was higher than NM plants. Generally, the use of mycorrhiza fungi in this experiment reduced the harmful effects of water stress. Our results shown that G. verciform and G. etunicatum were better for symbiosis with “Asgari” grapevine under water limitation.

Keywords

Drought Glomus spp Grapevine Nutrient Osmolyte

References

  1. Abdel-Salam, E., Alatar, A., El-Sheikh, M.A. (2018). Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences. 25: 1772-1780.
  2. Auge, R.M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science. 84: 373-381.
  3. Bagheri, V., Shamshiri, M.H., Shirani, H., Roosta, H.R. (2012). Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. Journal Agriculture Science Technology. 14: 1591-1604.
  4. Bates, L., Waldren, R., Teare, I. (1973). Rapid determination of free proline for water-stress studies. Journal of Plant and soil. 39: 205-207.
  5. Bavaresco, L., Fogher, C. (1996). Lime-induced chlorosis of grapevine as affected by rootstock and root infection with arbuscular mycorrhiza and Pseudomonas fluorescens. Journal of Grapevine Research. 35(3): 119-123.
  6. Bettoni, J.C., Bonnart, R., Shepherd, A., kretzschmmar, A.A., Volk, G.M. (2019). Cryopreservation of grapevine (Vitis spp.) shoot tips from growth chamber-sourced plants and histological observations. Journal of Grapevine Research. 58: 71-78. DOI: 10.5073/vitis.2019.58.71-78.
  7. Blokhina, O., Virolainen, E., Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress. Journal Annals Botany. 91: 179-194.
  8. Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Mare, C., Tondelli, A., Stanca, A.T. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Journal Field Crops Research. 105: 1-14.
  9. Chapman, H.D., Pratt, P.F. (1982). Methods of Analysis for Soils, Plants and Waters. Division of Agriculture. University of California. Berkeley CA. PP 4034.
  10. Chen, S., Cui, X., Chen, Y., Chunsun, G., Miao H., Haishun, G., Chen, F., Liu Z., Guan, Z., Fang, W. (2011). Cgdreba transgenic chrysanthemum confers drought and salinity tolerance. Environmental and Experimental Botany. 74: 255- 260.
  11. Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M., Rea, E. (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils. 44: 501-509.
  12. Davies, F., Potter, J.R., Linderman, R.G. (1992). Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development on pepper plants independent of plant size and nutrient content. Journal of Plant Physiology. 139: 289-294.
  13. Demmig-Adams, B., Adams, W.W. (1996). Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta. 198: 460-470.
  14. Desnos, T. (2008). Root branching responses to phosphate and nitrate. Current Opinion of Plant Biology. 11: 82-87.
  15. Farooq, M., Kobayashi, N., Wahid, A., Ito, O., Basra, S.M.A. (2009). Strategies for producing more rice with less water. Advances in Agronomy. 101: 352-388.
  16. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Asra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy Sustainable Development. 29: 185-212.
  17. Fathi, H., Imani, A., Amiri, M.E., Hajilou, J., Nikbakht, J. (2017). Response of almond genotypes/cultivars grafted on GN15 ‘Garnem’ rootstock in deficit-irrigation stress conditions. Journal of Nuts. 8(2): 123-135.
  18. Fitter, A.H., Hay, R.K.M. (2002). Environmental physiology of plants. 2nd Edition. Academic Press. London. PP. 120-128.
  19. Giovannetti, M., Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New phytologist. 84: 489-500.
  20. Giri, B., Mukerji, K. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14: 307-312.
  21. Hasegawa, P.M., Bressan, R.A., Jian-Kang, Z., Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review. Plant Physiology and Molecular Biology. 51: 463-599.
  22. Hashem, A., Abdallah, E.F., Alqarawi, A.A., Aldubise, A., Egamberdieva, D. (2015). Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photo synthetic and antioxidant pathways. Journal of Plant Interaction. 10: 230-242.
  23. Holland, T.C., Bowen, P., Bogadanoof, C., Hart, M.M. (2014). How distinct are arbuscular mycorrhizal fungal communities associating with grapevines. Biology and Fertility of Soils. 50: 667-674. DOI: 10.1007/s00374-013-0887-2.
  24. Irigoyen, J.J., Emerich, D., Sanchie, W., Diaz, M. (1992). Water stress induced changeing concentrations of prolin and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia plantarum. 84: 67-72.
  25. Jothi, G., Babu, R.S., Rajendren, G. (2005). Biomanagment of nematodes by mycorrhiza - A review. Agricultural Reviews. 26: 249 - 260.
  26. Kumar, M., Kumar, A., Mandal, N.P. (2018). Evaluation of Recombinant Inbreed Lines (RIL) population of upland rice under stress and non-stress conditions for grain yield and drought tolerance. Indian Journal of Agricultural Research. 52:119-125.
  27. Kumar, R., Ahmad, A., Dular, R.K., Chahal, D. (2015). Knowledge and adoption of improved grape cultivation practices in Haryana. Indian Agricultural Science Digest. 35: 31-35
  28. Kranner, I., Minibayeva, F.V., Backett, R.P., Seal C.E. (2010). What is stress? Concepts, definitions and applications in seed science. New phytologist. 188: 655-673.
  29. Krithika, V., Naik, R., Pragalyaashree, P. (2015). Functional properties of grape (Vitis vinifera) seed extract and possible extraction techniques - A review .Agricultural Reviews. 36: 313-320.
  30. Li, H.Y., Shu, H.R., Liu, R.J. (2002). The basis of biochemistry and molecular biology for the defense responses induced by VAM fungi. Natural Science. 33(1): 107-111.
  31. Lichtenthaler, R.K. (1987). Chlorophylls and carotenoids - pigments of photosynthetic bio membranes. In: Colowick, S. P., Kaplan, N. O (ed.) Methods in Enzymology. Vol. 148. Pp. 350-382. Academic Press, San Diego, New York, Berkeley, Boston, London, Sydney, Tokyo, Toronto.
  32. Liu, A., Hamel, C., Hamilton, R.I., Ma, B.L., Smith, D.L. (2000). Acquisition of Cu, Zn, Mn and Fe by Mycorrhizal Maize (Zea mays L.) Grown in Soil at Different P and Micronutrient Levels. Mycorrhiza. 9: 331-336.
  33. Lu, J.Y., Mao, Y.M., Shen, L.Y., Peng, S.Q., Li, X.L. (2003). Effects of VA mycorrhiza fungus inoculated on drought tolerance of wild jujube (Zizyphus spinosus Hu) seedlings. Acta Horticulture Sinica. 30(1): 29-33.
  34. Munne-Bosch, S., Alegre, L. (2000). Changes in carotenoids, tocopherols and diterpenes during drought and recovery and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta. 207: 925-931.
  35. Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances. 32: 429-448.
  36. Nicolas, E., Meastre-Valero, J.F., Alarcon, J.J., Pedrero, F., Vicente-    Sanchez, J., Bernab, A. (2015). Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. Journal of Agriculture Science. 153: 1084-1096. DOI: 10.1017/s002185961400080x
  37. Owen, D., Williams, A.P., Griffith, G.W., Withers, P.J.A. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecology. 86: 41-54.
  38. Phillips, J.M., Haymann, D.S. (1970). Improved proce_dures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. vol. 55, pp. 158-161.
  39. Pimentel, C. (1999). Relaçoes hidricas em dois híbridos de milho sob dois ciclos de deficiência hídrica. Pesquisa Agropecuária Brasileira. 34: 2021-2027.
  40. Quiroga, G., Erice, G., Aroc, R., Chaumont, F., Ruiz-Lozano, J. M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Frontier in Plant Science. 8: 1056. DOI: 10.3389/fpls. 2017.11056.
  41. Rashid, M.A., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I., Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiology Research. 183: 26-41.
  42. Rodrigues, B.M., Souza, B.D., Nogueira, R.M., Santos, M.G. (2010). Tolerance to water deficit in young trees of jackfruit and sugar apple. Revista Ciencia Agronomica. 41: 245-252.
  43. Rieger, M., Lo Bianco, R., Okie, W.R. (2003). Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. Tree Physiology. 23: 51-58.
  44. Ruiz-Lozano, J.M., Azcon, R., Gomez, M. (1995). Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Applied Environmental Microbiology. 61: 456-460.
  45. Ruiz-Lozano, J.M., Porcel, R., Azconm, R., Aroca, R. (2012). Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art. In: Aroca, R., (Ed.). Responses to Drought Stress: From Morphological to Molecular Features, Heidelberg: Springer-Verlag. pp: 335-362.
  46. Ruiz_Lozano, J.M. Azcon, R. (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, vol. 10, pp. 137-143.
  47. Salekjalali, M., Haddad, R., Jafari, B. (2012). Effects of soil water shortages on the activity of antioxidant enzymes and the contents of chlorophylls and proteins in barley. American-Eurasian Journal of Agriculture and Environmental Science. 12: 57-63.
  48. Sannazzaro, A., Ruiz, A., Alberto, E., Menendez, A. (2004). Presence of different arbuscular mycorrhizal infection patterns in Lotus glaber growing in the Salado River Basin. Mycorrhiza. 14: 139-142.
  49. Schubert, A., Mazzitelli, M., Ariusso, O., Eynard, I. (1990). Effects of vesicular-arbuscular mycorrhizal fungi on micro propagated grapevines: Influence of endophyte strain, P fertilization and growth medium. Journal of Vitis. 29: 5-13
  50. Silva, E.C., Nogueira, R.J.M.C., Vale, F.H.A., Melo, N.F., Araujo, F.P. (2009). Water relations and organic solutes production in four umbu tree (Spondias tuberosa) genotypes under intermittent drought. Brazilian Journal of Plant Physiology. 21: 43-53.
  51. Sircelj, H., Tausz, M., Grill, D., Batic, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology. 162: 1308-1318.
  52. Souza, C.C., Oliveira, F.A., Silva, I.F., Amorim Neto, M.S. (2000). Evaluation of methods of available water determinaton and irrigation management in “terra roxa” under cotton crop. Revista Brasileira de Engenharia Agrícola e Ambiental. 4: 338-342.
  53. Stupic, D., Bauer, N., Jagic, M., Lucic, A., Mlinarec, J., Malenica, N., Karoglankontic, J., Maletic, E., Leljak-Levanic, D. (2019). Reproductive potential of the functionally female native Croatian grapevine ‘Grk bijeli’. Journal of Vitis. 58: 61-70. DOI: 10.5073/vitis.2019.58.61-70.
  54. Thakur, P., Kumar, S., Malik, J.A., Berger, J.D., Nayyar, H., (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany. 67: 429-443.
  55. Trouvelot, S., Bonneau, L., Redecker, D., Tuinen, D., Adrian, M., Wipf, D. (2015). Arbuscular mycorrhiza symbiosis in viticulture: a review. Agronomy for Sustainable Development. 35: 1449-1467. DOI: 10.1007/s13593-015-0329-7.
  56. Tsabarducas, V., Chatzistathis, T., Therios, I., Koukourikou-Petridou, M., Tananaki, C. (2015). Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl Stress. Plant Physiology and Biochemistry. 97: 196-206. 
  57. Vimal, S.R., Singh, J.S., Arora, N.K., Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management. Soil Science Society. 27: 177-192.
  58. Wu, Q.S., Xia, R.X. (2005). Effects of AM fungus on drought tolerance of citrus grafting seedling trifoliate orange/cara. Chinese Journal of Applied Ecology. 16(5): 865-869.
  59. Wu, Q.S., Zou, Y.N. (2009). Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philippine Agriculture Scientist. 92: 33-38.
  60. Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C., Chaum, S. (2016). Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Scientia Horticulturae. 198: 107-117. DOI:10.1016/j.scienta.2015.11.002.
  61. Zhang, H.S., He, X.L. (2007). Effect of AM fungal on the protective system in leaves of Artemisia ordosica under drought stress. Biotechnology Bulletin. 3: 129-133.
  62. Zhang, T., Yang, X., Guo, R., Guo, J. (2016). Response of AM fungi spor population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Scientific Reporter. 6: 24749. DOI: 10.1038/srep24749.
  63. Zyprian, E., Eibach, R., Trapp, O., Schwander, F., Topfer, R. (2018). Grapevine breeding under climate change: Applicability of a molecular marker linked to veraison. Journal of Vitis. 57: 119-123. DOI: 10.5073/vitis.2018.57.119-123. 

Global Footprints