Potential of the Jerivá Fruit (Syagrus romanzoffiana C.): Physicochemical and Bioactive Characterization

DOI: 10.18805/ag.D-235    | Article Id: D-235 | Page : 13-20
Citation :- Potential of the Jerivá Fruit (Syagrus romanzoffiana C.): Physicochemical and Bioactive Characterization.Agricultural Science Digest.2021.(41):13-20
Leirson Rodrigues da Silva, Ana Rosa de Figueiredo, Lilia Aparecida Salgado de Morais rodriguesleirson@yahoo.com.br
Address : Federal Rural University of Rio de Janeiro, Institute of Technology, Department of Food Technology, Seropédica, Rio de Janeiro, Brazil. 
Submitted Date : 8-02-2020
Accepted Date : 27-06-2020

Abstract

Background: Jerivá is a native palm tree from Brazil, very abundant in the rural environment and widely observed in the urban area. Its fruits can be consumed in fresh and drink form. Despite this context there are few studies on the species, especially when portraying the nutritional value of its fruit. This research aims to investigate jerivá fruits in three ripening stages.
Methods: The fruits were harvested in a domestic orchard in Campos dos Goytacazes-RJ, in three ripening stages, according to the color: green (green peel), intermediate (yellowish green peel) and ripe (orange peel). The fruits were characterized in terms of physicochemical and bioactive composition.
Result: This fruit has a low source of ascorbic acid in all evaluated stages, but has high levels for yellow flavonoids and total extractable polyphenols when mature (23.07 mg/100 g and 596.95 mg GAE/100 g, respectively). Considering the relevance of this fruit species and the few researches at national level, it is necessary to evaluate the physicochemical and bioactive characteristics of the fruits of Jerivá, in order to quantify particularities regarding the detailed composition, guaranteeing its potential for use.

Keywords

Bioactive compounds Functional foods Native fruits Physicochemical Syagrus romanzoffiana C

References

  1. Albuquerque, T.G., Santos, F., Sanches-Silva, A., Oliveira, M.B., Bento, A.C. and Costa, H.S. (2016). Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: Potential health benefits. Food Chemistry. 193: 187-195.
  2. AOAC. (2016). Official Methods of Analysis of the Association of Official Analytical Chemistry. 20th, Washington: AOAC.
  3. Bala, K. and Barmanray, A. (2019). Bioactive compounds, vitamins and minerals composition of freeze-dried Grewia asiatica L. (Phalsa) pulp and seed powder. Asian Journal of Dairy and Food Research. 38: 237-241.
  4. Bonomo, M. and Capeletti, L.E. (2014). Uso prehispánico de las palmeras Syagrus romanzoffiana y Butia yatay en el Nordeste argentino: Aportes desde la etnografýa y la biometrýa [Prehispanic use of the palm trees Syagrus romanzoffiana and Butia yatay in the northeast of Argentina: Contributions of ethnography and biometrics]. Revista del Museo de Antropologia. 7: 227-234.
  5. Camilo, Y.M.V., Souza, E.R.B., Vera, R. and Naves, R.V. (2014). Caracterização de frutos e seleção de progênies de cagaiteiras (Eugenia dysenterica DC.). Científica. 42: 1-10.
  6. Cândido, T.L.N. and Silva, MR. (2017). Comparison of the physicochemical profiles of buriti from the Brazilian Cerrado and the Amazon region. Food Science and Technology. 37: 78-82.
  7. Capecka, E., Mareczek, A. and Leja, M. (2005). Antioxidant activity of fresh and dry herbs of some Lamiaceae especies. Food Chemistry. 93: 223-226.
  8. Chitarra, M.I.F. and Chitarra, A.B. (2005). Pós-colheita de frutos e hortaliças: fisiologia e manuseio. 2ed. Lavras: UFLA, 785p.
  9. Corrêa, B.M., Baldissera, L., Barbosa, F.R., Ribeiro, E.B. andrighetti, C.R., Agostini, J.S. and Valladão, D.M.S. (2019). Centesimal and mineral composition and antioxidant activity of the bacaba fruit peel. Bioscience Journal. 35: 509-517.
  10. Davison, A., Rousseau, E. and Dunn, B. (1993). Putative anticarcino- -genic actions of carotenoids: nutritional implications. Canadian Journal of Physiology of Pharmacology. 71: 732-745.
  11. Dinesh, B., Yadav, R.B., Reddy, D.A., Padma, S. and Sukumaran, M.K. (2015). Determination of ascorbic acid content in some Indian species. International Journal of Current Microbiology Applied Sciences. 4: 864-868.
  12. Donno, D., Cavanna, M., Beccaro, G.L., Mellano, M.G., Marinoni, D.T., Cerutti, A.K. And Bounous, G. (2013). Currants and strawberries as bioactive compound sources: determination of antioxidant profiles with HPLC-DAD/MS system. Journal Applied Botany Food Quality. 86: 1-10.
  13. Dransfield, J., Uhl, N.W., Asmussen, C.B., Baker, W.J., Harley, M.M. and Lewis, C.E. (2008). Genera Palmarum: the evolution and classification of palms. Kew Publishing, Royal Botanical Garden, Londres. 732p.
  14. Ferreira, D.F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia. 38: 109-112.
  15. Francis, F.J. (1982). Analysis of Anthocyanins. In: Anthocyanins as Food Colors. [Markakis, P (ed)]. New York: Academic Press, p. 181-207.
  16. Galetti, M., Guevara, R., Côrtes, M.C., Fadini, R., Von Matter, S., Leite, A.B. and Pires, M.M. (2013). Functional extinction of birds drives rapid evolutionary changes in seed size. Science. 340: 1086-1090.
  17. Giulietti, A.M., Harley, R.M., Queiroz, L.P., Wanderley, M.G.L. and Van Den Berg, C. (2005). Biodiversity and conservation of plants in Brazil. Conservation Biology. 19: 632-639.
  18. Goudel, F., Shibata, M., Coelho, C.M.M. and Miller, P.R.M. (2013). Fruit biometry and seed germination of Syagrus romanzoffiana (Cham.) Glassm. Acta Botanica Brasilica. 27: 147-154.
  19. Halford, N.G., Curtis, T.Y., Muttucumaru, N., Postles, J. and Mottram, D.S. (2011). Sugars in crop plants. Annals of Applied Biology. 158: 1-25.
  20. Higby, W.K. (1962). A simplifield method for determination of some the carotenoid distribution in natural and carotene fortifield orange juice. Journal Food Science. 27: 42-49.
  21. Johnson, D.V. (1998). Non-wood forest products 10: tropical palms. [S.l.]. Food and Agriculture Organization of the United Nations (FAO). Disponível em <http://www.fao.org/docrep/>. Acesso em 12 Jan 2010.
  22. Kareem, S.H.K.A., Kshirsagar, R. and Patil, S. (2017). Physiochemical characterization of starch obtained from fruits of Annona reticulata Linn. (Annonaceae). International Research Journal of Pharmacy. 8: 113-120.
  23. Kier, G., Mutke, J., Dinerstein, E., Ricketts, T.H., Küper, W., Kreft, H. and Barthlott, W. (2005). Global patterns of plant diversity and floristic knowledge. Journal of Biogeography. 32: 1107-1116.
  24. Kim, Y., Giraud, D.W. and Driskell, J.A. (2007). Tocopherol and carotenoid contents of selected Korean fruits and vegetables. Journal of Food Composition and Analysis. 20: 458-465.
  25. Larrauri, JA., Rupérez, P. and Saura-Calixto, F. (1997). Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry. 45: 1390-1393.
  26. Loizzo, M.R., Lucci, P., Núñez, O., Tundis, R., Balzano, M., Frega, N.G., Conte, L., Moret, S., Filatova, D., Moyano, E. and Pacetti, D. (2019). Native colombian fruits and their by-products: phenolic profile, antioxidant activity and hypoglycaemic potential. Foods. 8: 1-10.
  27. Long, R.L., Walsh, K.B., Rogers, G. and Midmore, D.J. (2004). Source sink manipulation to increase melon (Cucumis melo L.) fruit biomass and soluble sugar content. Australian Journal of Agricultural Research. 55: 1241-1251.
  28. Lorenzi, H., Noblick, L.R., Kahn, F. and Ferreira, E. (2010). Brazilian flora Lorenzi: Arecaceae (Palms) [Brazilian flora: Arecaceae (Palms)]. Nova Odessa, Brazil: Instituto Plantarum de Estudos da Flora. 368p.
  29. Mambrin, M.C.T. and Barrera-Arellano, D. (1997). Caracterización de aceites de frutos de palmeras de la región amazonica del Brasil. Grasas y Aceites. 48: 154-158.
  30. Mcguire, R.G. (1992). Reporting of objective color measurements. HortScience. 27: 1254-1255.
  31. Mhanhmad, S., Leewanish, P., Punsuvon, V. and Srinives, P. (2011). Seasonal effects on bunch components and fatty acid composition in oil palm (Elaeis guineensis). African Journal of Agricultural Research. 6: 1835-1843.
  32. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry. 31: 426-428.
  33. Noblick, L.R. (2017). A revision of the genus Syagrus (Arecaceae). Phytotaxa. 294: 1-262.
  34. Ousaaid D., Mansouri I., Laaroussi H., Eighouizi, A., Lyoussi, B. and Eiarabi, I. (2020). Phytochemical content and antioxidant activity of flesh fruits Rosa canina extracts collected from Ait Ayach Midelt. Indian Journal of Agricultural Research. 54(3): 373-377.
  35. Pereira, J.M.A.T.K., Oliveira, K.A.M., Soares, N.F.F., Gonçalves, M.P.J.C., Pinto, C.L.O. and Fontes, E.A.F. (2006). Avaliação da qualidade físico-química, microbiológica e microscópica de polpas de frutas congeladas comercializadas na cidade de Viçosa-MG. Alimentos e Nutrição. 17: 437-    442.
  36. Rababah, T.M., Hettiarachy, N.S. and Horax, R. (2004). Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola and ginkgo extracts, vitamin E and butylhydroquinone. Journal of Agricultural and Food Chemistry. 52: 5183-5186.
  37. Ribeiro, L.O., Viana, E.S., Godoy, R.L.O., Freitas, S.C., Freitas, S.P. and Matta, V.M. (2019). Nutrients and bioactive compounds of pulp, peel and seed from umbu fruit. Ciência Rural. 49: 1-8.
  38. Rydlewski, A.B., Morais, D.R., Rotta, E.M., Claus, T., Vagula, J.M., Silva, M.C., Junior, O.O.S. and Visentainer, J.C. (2017). Bioactive compounds, antioxidant capacity and fatty acids in different parts of four unexplored fruits. Journal of Food Quality. 2017: 1-9.
  39. Rufino, M.S.M., Alves, R.E., BRITO, E.S., Pérez-Jiménez, J. and Saura-Calixto, F. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry. 121: 996-1002.
  40. Santos, M.F.G., Mamede, R.V.S., Rufino, M.S.M., Brito, E.S. and Alves, R.E. (2015). Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants. 4: 591-602.
  41. Santos, M.F.G., Alves, R.E., Brito, E.S., Silva, S.M. and Silveira, M.R.S. (2017). Quality characteristis of fruits and oils of palms native to the Brazilian Amazon. Revista Brasileira de Fruticultura. 39: 305.
  42. Schreckinger, M.E., Lotton, J., Lila, M.A. and De Meija, E.G. (2010). Berries from South America: a comprehensive review on chemistry, health potential and commercialization. Journal of Medicinal Food. 13: 233-246.
  43. Souza, A., Oliveira, T., Mattietto, R., Nascimento, W. and Lopes, A. (2018). Bioactive compounds in the peel of camu camu genotypes from Embrapa’s active germplasm bank. Food Science and Technology. 38: 67-71.
  44. Stafussa, A.P., Maciel, G.M., Rampazzo, V., Bona, E., Makara, C.N., Junior, B.D. and Haminiuk, C.W.I. (2018). Bioactive Compounds of 44 Traditional and Exotic Brazilian Fruit Pulps: Phenolic Compounds and Antioxidant Activity. International Journal of Food Properties. 21: 106-118.
  45. Svenning, J.C., Borchsenius, F., Bjorholm, S. and Balslev, H. (2008). High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography. 35: 394-406.
  46. Vinita B. and Punia D. (2016). Nutritional composition of fruit of four date palm (Phoenix dactylifera L.) cultivars grown in Haryana, India. Asian Journal of Dairy and Food Research. 35: 331-334.
  47. Wind, J., Smeekens, S. and Hanson, J. (2010). Sucrose: Metabolite and signaling molecule. Phytochemistry. 71: 1610-1614.
  48. Yemn, E.W. and Willis, A.J. (1954). The estimation of carbohydrate in plant extracts by anthrone. Biochemical Journal. 57: 508-514.
  49. Zambrana, N.Y.P., Byg, A., Svenning,c.c., Moraes, M., Grandez, C. and Balsley, H. (2007). Diversity of palm uses in the western Amazon. Biodiversity and Conservation. 16: 2771-2787.
     

Global Footprints