Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus

​Research Progress on New Methods to Prevent and Treat Ovarian Senescence: A Review

Kai Wang, Xiang Yao, Rong-Qing Pang, Xiang-Qing Zhu, Xing-Hua Pan, Guang-Ping Ruan
Ovarian senescence is a special type of organ senescence and the ovaries are the earliest aging organs. The ovaries have approximately 1 million to 2 million follicles at birth, but only approximately 1000 primordial follicles are left in menopause. Ovarian function also decreases with age. Women’s fertility also declines. The ovaries are the core female reproductive organs and are of great significance for maintaining reproductive system function and endocrine stability. Ovarian aging is also considered an indicator of female body aging, which drives the aging of many organs of the body. Therefore, how to prevent and treat ovarian aging has become a research question that has been widely studied by biomedical scientists and geriatric researchers in recent years. Recently, studies have shown that bone marrow mesenchymal stem cells (BMSCs) can prevent and treat ovarian aging. This article reviews the characteristics of ovarian aging, the advantages and disadvantages of various clinical treatment measures and the advantages of bone marrow mesenchymal stem cell therapy, aiming to provide references for the prevention and treatment of ovarian aging. My article was written at the Basic Medical Laboratory of the 920th Hospital of the Joint Logistics Support Force of PLA and written from 2021 to 2022.

  1. Awad, H.A. (2020). Is there any mean to postpone the menopausal ovarian senescence? International Journal of Fertility and Sterility. 13(4): 346-347.

  2. Bach, A.S., Macklon, K.T., Kristensen, S.G. (2020). Futures and fears in the freezer: Danish women’s experiences with ovarian tissue cryopreservation and transplantation. Reprod Biomed Online. 41(3): 555-565.

  3. Badawy, A., Sobh, M.A., Ahdy, M., Abdelhafez, M.S. (2017). Bone marrow mesenchymal stem cell repair of cyclophosphamide- induced ovarian insufficiency in a mouse model. Int. J. Womens Health. 9: 441-447.

  4. Bahrehbar, K., Rezazadeh Valojerdi, M., Esfandiari, F., Fathi, R., Hassani, S.N., Baharvand, H. (2020). Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure. World J. Stem. Cells. 26:12(8): 857-878.

  5. Bao, R., Xu, P., Wang, Y., Wang, J., Xiao, L., Li, G. (2018). Bone marrow derived mesenchymal stem cells transplantation rescues premature ovarian insufficiency induced by chemotherapy. Gynecol Endocrinol. 34(4): 320-326.

  6. Chen, L., Guo, S., Wei, C., Li, H., Wang, H., Xu, Y. (2018). Effect of stem cell transplantation of premature ovarian failure in animal models and patients: A meta-analysis and case report. Exp. Ther. Med. 15(5): 4105-4118.

  7. Comhaire, F. (2016). Hormone replacement therapy and longevity. Andrologia. 48(1): 65-68.

  8. Darbandi, S., Darbandi, M., Khorram Khorshid, H.R., Sadeghi, M.R., Agarwal, A., Sengupta, P. (2017). Ooplasmic transfer in human oocytes: Efficacy and concerns in assisted reproduction. Reprod Biol. Endocrinol. 2;15(1): 77. doi: 10.1186/s12958- 017-0292-z.

  9. Demko, Z.P., Simon, A.L., McCoy, R.C., Petrov, D.A., Rabinowitz, M. (2016). Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening. Fertil. Steril. 105(5): 1307-1313.

  10. Farjah, G.H., Fazli, F., Karimipour, M., Pourheidar, B., Heshmatiyan, B., Pourheidar, M. (2018). The effect of bone marrow mesenchymal stem cells on recovery of skeletal muscle after neurotization surgery in rat. Iran J. Basic Med. Sci. 21(3): 236-243.

  11. Fu, X., He, Y., Xie, C., Liu, W. (2008). Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 10(4): 353-363.

  12. Gellert, S.E., Pors, S.E., Kristensen, S.G., Bay-Bjorn, A.M., Ernst, E., Yding Andersen, C. (2018). Transplantation of frozen- thawed ovarian tissue: An update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J. Assist Reprod Genet. 35(4): 561-570.

  13. He, Y., Chen, D., Yang, L., Hou, Q., Ma, H., Xu, X. (2018). The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res. Ther. 4;9(1): 263. doi: 10.1186/s13287-018-1008-9.

  14. Isik, H., Sahbaz, A., Timur, H., Aynioglu, O., Atalay Mert, S., Balik, A.R. (2017). The use of thiol/disulfide as a novel marker in premature ovarian failure. Gynecol Obstet Invest. 82(2): 113-118.

  15. Jaiswal, S., Jadon, N.S., Bodh, D., Vishwakarma, R.K. (2020). Clinical and radiographic effects of bone marrow derived mesenchymal stem cells along with local insulin therapy in healing of segmental bone defect in diabetic rabbits. Indian Journal of Animal Research. 54: 1422-1427.

  16. Jensen, A.K., Kristensen, S.G., Macklon, K.T., Jeppesen, J.V., Fedder, J., Ernst, E. (2015). Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod. 30(12): 2838-2845.

  17. Jiao, W., Mi, X., Qin, Y., Zhao, S. (2020). Stem cell transplantation improves ovarian function through paracrine mechanisms. Curr. Gene Ther. 20(5): 347-355.

  18. Kalantaridou, S.N., Naka, K.K., Bechlioulis, A., Makrigiannakis, A., Michalis, L., Chrousos, G.P. (2006). Premature ovarian failure, endothelial dysfunction and estrogen-progestogen replacement. Trends Endocrinol Metab. 17(3): 101-109.

  19. Kattekola, P. (2021). A brief note on stem cells and adult stem cells. Translational Medicine. 11(1). DOI: 10.36648/2161-1025. 21.11.219.

  20. Keyvani, V., Farshchian, M., Esmaeili, S.A., Yari, H., Moghbeli, M., Nezhad, S.K. (2019). Ovarian cancer stem cells and targeted therapy. J. Ovarian Res. 6;12(1): 120.doi: 10.1186/ s13048-019-0588-z.

  21. Kim, K.H., Kim, E.Y., Kim, G.J., Ko, J.J., Cha, K.Y., Koong, M.K., (2020). Human placenta-derived mesenchymal stem cells stimulate ovarian function via miR-145 and bone morphogenetic protein signaling in aged rats. Stem Cell Res. Ther. 5;11(1): 472. doi: 10.1186/s13287-020-01988-x.

  22. Kim, K.H. and Lee, K.A. (2022). Metabolic rewiring by human placenta- derived mesenchymal stem cell therapy promotes rejuvenation in aged female rats. Int. J. Mol. Sci. 5;23(1): 566. doi: 10.3390/ijms23010566.

  23. Kolibianaki, E.E., Goulis, D.G., Kolibianakis, E.M. (2020). Ovarian tissue cryopreservation and transplantation to delay menopause: Facts and fiction. Maturitas. 142: 64-67.

  24. Li, J., Zhou, F., Zheng, T., Pan, Z., Liang, X., Huang, J. (2015). Ovarian germline stem cells (OGSCs) and the hippo signaling pathway association with physiological and pathological ovarian aging in mice. Cell Physiol. Biochem. 36(5): 1712-1724.

  25. Mingli, J. and Guan, L. (2016). Immunogenicity of human umbilical cord mesenchymalstem cells during ex vivo expansion. Indian Journal of Animal Research. 50: 215-217.

  26. Mohamed, S.A., Shalaby, S.M., Abdelaziz, M., Brakta, S., Hill, W.D., Ismail, N. (2018). Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci. 25(1): 51-63.

  27. Pacu, I., Ionescu, C., Serafinceanu, C., Pantea-Stoian, A.M., Elian, V. (2014). Modern Approach in Premature Ovarian Failure. Romanian Journal of Diabetes Nutrition and Metabolic Diseases. 21(3).

  28. Pu, D., Tan, R., Yu, Q., Wu, J. (2017). Metabolic syndrome in menopause and associated factors: a meta-analysis. Climacteric. 20(6): 583-591.

  29. Rodriguez-Wallberg, K.A., Tanbo, T., Tinkanen, H., Thurin-Kjellberg, A., Nedstrand, E., Kitlinski, M.L. (2016). Ovarian tissue cryopreservation and transplantation among alternatives for fertility preservation in the Nordic countries - compilation of 20 years of multicenter experience. Acta Obstet Gynecol Scand. 95(9): 1015-1026.

  30. Rumman, M., Dhawan, J., Kassem, M. (2015). Concise review: Quiescence in adult stem cells: Biological significance and relevance to tissue regeneration. Stem Cells. 33(10): 2903-2912.

  31. Sharpley, M.S., Marciniak, C., Eckel-Mahan, K., McManus, M., Crimi, M., Waymire, K. (2012). Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 12;151(2): 333-343.

  32. Sheng, X., Yang, Y., Zhou, J., Yan, G., Liu, M., Xu, L. (2019). Mitochondrial transfer from aged adipose-derived stem cells does not improve the quality of aged oocytes in C57BL/6 mice. Mol. Reprod. Dev. 86(5): 516-529.

  33. Syafruddin, S., Siregar, T.N., Azrina, A., Armansyah, T., Panjaitan, B., Aliza, D., Sutriana, A., Zuhrawati, Z., Rosmaidar, R., Roslizawaty, R. (2018). Histological description of aceh cattle ovary cryopreserved by various cryoprotectants. Indian Journal of Animal Research. 52: 1223-1226.

  34. Tilly, J.L. and Sinclair, D.A. (2013). Germline energetics, aging and female infertility. Cell Metab. 4;17(6): 838-850.

  35. Toner, J.P., Coddington, C.C., Doody, K., Van Voorhis, B., Seifer, D.B., Ball, G.D. (2016). Society for assisted reproductive technology and assisted reproductive technology in the United States: A 2016 update. Fertil Steril. 1;106(3): 541-546.

  36. Woods, D.C. and Tilly, J.L. (2015). Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod. Med. 33(6): 410-421.

  37. Yding Andersen, C., Mamsen, L.S., Kristensen, S.G. (2019). Fertility preservation: Freezing of ovarian tissue and clinical opportunities. Reproduction. 158(5): F27-F34.

  38. Yeo, G.E.C., Ng, M.H., Nordin, F.B., Law, J.X. (2021). Potential of mesenchymal stem cells in the rejuvenation of the aging immune system. Int. J. Mol. Sci. 27;22(11). 5749. doi: 10.3390/ijms22115749.

Editorial Board

View all (0)