Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.43

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus

Effects of Feed Restriction and Fermented Potato Protein Supplementation on IGF1, GHR and Kiss1 mRNA Expression in Intact Nursery Gilts

S. Krasaesub, M. Sukmak, P. Intaravichai, O. Boodde, N. Thanantong, S. Sajapitak
Background: Decreased feed intake is a common stress response presented after weaning that leads to a negative effect on performances. Health management and feed supplementation were commonly used to solve such problems. The objectives of this research were to study the effects of nutritional stress and the benefit of fermented potato protein supplementation in intact nursery gilts.
Methods: Prepubertal nursery gilts were assigned into the following feed treatments for 30 days: 1) normal feed, 2) normal feed with fermented potato protein (FPP) supplementation, 3) restricted feed which received 60% amount of normal feed and 4) restricted feed with FPP supplementation.
Result: Serum IGF-1 and IGF1 mRNA expression of semitendinosus muscle were significantly increased by FPP supplementation (P<0.05). All pig groups showed no different on serum cortisol and hypothalamic Kiss1 mRNA expression levels. The degree of feed restriction was suggested to be an important determinant of response of serum IGF-1, cortisol and hypothalamic Kiss1 mRNA expression. In this study, an elevated serum IGF-1 concentration correlated with IGF1 mRNA upregulation in a muscle rather than in a liver.

  1. Adams, G.R. and McCue, S.A. (1998). Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. Journal of Appllied Physiology. 84(5): 1716-1722. DOI:10.1152/ jappl.1998.84.5.1716.

  2. Brown, J.L., Walker, S. and Steinman, K. (2004). Endocrine Manual for the Reproductive Assessment of Domestic and Non-domestic Species. 2nd ed. USA: Smithsonian institution. pp. 93.

  3. Combes, S., Louveau, I. and Bonneau, M. (1997). Moderate food restriction affects skeletal muscle and liver growth hormone receptors differently in pigs. The Journal of Nutrition. 127(10): 1944-1949. DOI:10.1093/jn/127.10.1944.

  4. Hiney, J.K., Srivastava, V.K., Pine, M.D. and  Dees, W.L. (2009). Insulin-like growth factor-I activates KiSS-1 gene expression in the brain of the prepubertal female rat. Endocrinology. 150(1): 376-384. DOI:10.1210/en.2008-0954.

  5. Ieda, N., Uenoyama, Y., Tajima, Y., Nakata, T., Kano, M., Naniwa, Y., Watanabe, Y. et al. (2014). KISS1 gene expression in the developing brain of female pigs in pre- and peripubertal periods. Journal of Reproduction and Development. 60(4): 312-316. DOI: 10.1262/jrd.2013-129.

  6. Kummer, A., Baroncello, E., Moreira, L., Bernardi, M., Bortolozzo, F. and Wentz, I. (2015). Effects of oral supply of nutritional supplements on survival and growth of low birth weight piglets. Acta Scientiae Veterinariae. 43: 1336-1336. 

  7. Lallès, J.P., Boudry, G., Favier, C., Le Floc’h, N., Luron, I., Montagne, L., Oswald, I.P., Pié, S., Piel, C. and Sève, B. (2004). Gut function and dysfunction in young pigs: Physiology. Animal Research. 53(4): 301-316. DOI:10.1051/animres: 2004018.

  8. Lee, C., Chung, C. and Simmen, F. (1993). Ontogeny of the porcine insulin-like growth factor system. Molecular and Cellular Endocrinology. 93(1): 71-80. DOI: 10.1016/0303-7207 (93)90141-6.

  9. Lents, C.A. (2019). Review: kisspeptin and reproduction in the pig. Animal. 13(12): 2986-2999. DOI: 10.1017/s1751731119001666.

  10. Lertpimonpan, S., Rakangthong, C., Bunchasak, C. and Loongyai, W. (2019). Effects of fermented potato protein supplementation in drinking water on growth performance, carcass characteristics, small intestinal morphology and expression of IGF-1 and GHR genes in the liver of broiler chickens. Indian Journal of Animal Research. 53(5): 622-627.

  11. Mei, H. and Gan, L. (2018). Effects of former acquaintance on aggression, lesion and growth performance in weaned piglets after mixing. Indian Journal of Animal Research. 52(5): 768-773.

  12. Metges, C.C., Görs, S., Martens, K., Krueger, R., Metzler-Zebeli, B.U., Nebendahl, C., Otten, W., Kanitz, E., Zeyner, A., Hammon, H.M., Pfuhl, R. and Nürnberg, G. (2015). Body composition and plasma lipid and stress hormone levels during 3 weeks of feed restriction and refeeding in low birth weight female pigs. Journal of Animal Science. 93(3): 999-1014. DOI: 10.2527/jas.2014-8616.

  13. Namted, S., Poeikhampha, T., Rakangthong, C. and Bunchasak, C. (2020). Effect of capsaicin and capsaicin plus DL-methionine hydroxy analog in diet on growth performance and gastrointestinal conditions of nursery pigs. Indian Journal of Animal Research. 54(6): 703-708.

  14. NRC. (2012). Nutrient Requirements of Swine: Eleventh Revised Edition. The National Academies Press, Washington, DC.

  15. Owens, P., Gatford, K., Walton, P., Morley, W. and Campbell, R. (1999). The relationship between endogenous insulin- like growth factors and growth in pigs. Journal of Animal Science. 77(8): 2098-2103. DOI: 10.2527/1999.7782098x.

  16. Poltep, K., Tantawet, S., Chanapiwat, P., Korchunjit, J., Kaeoket, K. and Wongtawan, T. (2016). Effect of Feeding a Fermented Potato Extract Protein on Piglet Growth and Immunity. In: The 15th Chulalongkorn University Veterinary Conference 2016 (CUVC2016).

  17. Prunier, A., Martin, C., M Mounier, A. and Bonneau, M. (1993). Metabolic and endocrine changes associated with undernutrition in the peripubertal gilt. Journal of animal science. 71(7): 1887-1894. DOI: 10.2527/1993.7171887x.

  18. Roa, J., Garcia-Galiano, D., Varela, L., Sanchez-Garrido, M., Pineda, R., Castellano, J., Ruiz-Pino, F., Romero, M., Aguilar, E. and Lopez, M. (2009). The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology. 150(11): 5016-5026. DOI: 10.1210/en.2009-0096.

  19. Schoenle, E., Zapf, J., Humbel, R.E. and Froesch, E.R. (1982). Insulin- like growth factor I stimulates growth in hypophysectomized rats. Nature. 296(5854): 252-253. DOI:10.1038/296252a0.

  20. Sjögren, K., Liu, J.L., Blad, K., Skrtic, S., Vidal, O., Wallenius, V., Leroith, D., Törnell, J., Isaksson, O.G.P., Jansson, J.O. and Ohlsson, C. (1999). Liver-derived insulin-like growth factor I (IGF-1) is the principal source of IGF-1 in blood but is not required for postnatal body growth in mice. Proceedings of the National Academy of Sciences of the United States of America. 96(12): 7088-7092. DOI: 10.1073/ pnas.96.12.7088.

  21. Slifierz, M.J., Friendship, R., De Lange, C.F.M., Rudar, M. and  Farzan, A. (2013). An epidemiological investigation into the association between biomarkers and growth performance in nursery pigs. BMC Veterinary Research. 9: 247. DOI: 10.1186/1746-6148-9-247.

  22. Thorson, J.F., Prezotto, L.D., Adams, H., Petersen, S.L., Clapper, J.A., Wright, E.C., Oliver, W.T., Freking, B.A., Foote, A.P., Berry, E.D., Nonneman, D.J. and Lents, C.A. (2018). Energy balance affects pulsatile secretion of luteinizing hormone from the adenohypophesis and expression of neurokinin B in the hypothalamus of ovariectomized gilts. Biology of Reproduction. 99(2): 433-445. DOI:10.1093/ biolre/ioy069.

  23. Tomikawa, J., Homma, T., Tajima, S., Shibata, T., Inamoto, Y., Takase, K., Inoue, N., Ohkura, S., Uenoyama, Y., Maeda, K.I. and Tsukamura, H. (2010). Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biology of Reproduction. 82(2): 313-319. DOI:10.1095/biolreprod.109.079863.

  24. Wang, R., Kuang, M., Nie, H., Bai, W., Sun, L., Wang, F., Mao, D. and  Wang, Z. (2016). Impact of food restriction on the expression of the adiponectin system and genes in the hypothalamic-pituitary-ovarian axis of pre pubertal ewes. Reproduction in Domestic Animals. 51(5): 657-664. DOI: 10.1111/rda.12727.

  25. Zhou, D., Zhuo, Y., Che, L., Lin, Y., Fang, Z. and Wu, D. (2014). Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts. Molecular Biology Reports. 41(7): 4733-4742. DOI: 10.1007/s11033-014-3344-x.

  26. Zhuo, Y., Zhou, D., Che, L., Fang, Z., Lin, Y. and Wu, D. (2014). Feeding prepubescent gilts a high-fat diet induces molecular changes in the hypothalamus-pituitary-gonadal axis and predicts early timing of puberty. Nutrition. 30(7-8): 890- 896. DOI: 10.1016/j.nut.2013.12.019.

Editorial Board

View all (0)