Application of dsRNA VP15-WSSV by Oral Vaccination to Increase Survival Rate and Response Immunes of Tiger Shrimp Penaeus monodon

DOI: 10.18805/IJAR.BF-1460    | Article Id: BF-1460 | Page : 893-898
Citation :- Application of dsRNA VP15-WSSV by Oral Vaccination to Increase Survival Rate and Response Immunes of Tiger Shrimp Penaeus monodon.Indian Journal of Animal Research.2022.(56):893-898
Andi Parenrengi, Andi Tenriulo, Emma Suryati, Rosmiati Rosmiati, Samuel Lante, Andi Asmawati Azis, Alimuddin Alimuddin andi_parenrengi@hotmail.com
Address : Research Institute for Brackishwater Aquaculture and Fisheries Extension, Maros 90512, Indonesia.
Submitted Date : 30-10-2021
Accepted Date : 26-12-2021


Background: RNA interference (RNAi) has recently introduced as a powerful technique for specific gene silencing in antiviral therapy for controlling shrimp diseases. The present study was conducted to assess the effect of dsRNA VP15-WSSV vaccine by oral administration on tiger shrimp survival rate and response immunes.
Methods: A gene encoding VP15 was isolated from tiger shrimp infected WSSV and cloned into the L4440 vector with the T7 promoter. For mass production, the pT7-VP15 gene construct was transformed to bacteria. The bacteria were inactivated using the heat-killed method by immersion and 108 cells of bacteria were mixed with 0.02 g of commercial shrimp feed for dsRNA application. The shrimp were fed by: (A) feed containing dsRNA and coated by fish oil, (B) feed without dsRNA and coated by fish oil and (C) feed without dsRNA and fish oil. The shrimp were challenged with WSSV by intramuscular injection after vaccination for two weeks. The survival rate (SR) after the challenge test was counted daily, while the THC and proPO were observed before, then on 1st, 3rd and 5th days post-challenge (dpc).
Result: The survival rate of tiger shrimp for all treatments tended to decrease until the 3rd dpc, while the 4th dpc the vaccinated tiger shrimp was started to exhibit the higher SR compared to both treatments. The vaccinated tiger shrimp had significantly (P<0.05) higher SR and THC compared with both control treatments, but not significantly (P>0.05) for proPO activity. The results indicated that the application of oral dsRNA vaccination suggested increasing in SR and response immune of tiger shrimp.


dsRNA VP15 vaccine Oral administration Response immune Survival rate Tiger shrimp


  1. Amparyup, P., Charoensapsri, W., Tassanakajon, A. (2013). Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish and Shellfish Immunology. 34(4): 990-1001. DOI:10.1016/j.fsi.2012.08.019.
  2. Aonullah, A.A., Nuryati, S., Alimuddin, Murtini, S. (2016). Efficacy of koi herpesvirus DNA vaccine administration by immersion method on Cyprinus carpio field scale culture. Aquaculture Research. 48(6): 2655-2662. DOI: 10.1111/ are.13097.
  3. Basavaraja, N. (2013). Efficacy of macrogard (an immunostimulant) on growth and survival in shrimps and carps. Indian Journal of Animal Research. 47(5): 443-448.
  4. Boonyakida, J., Xu, J., Satoh, J., Nakanishi, T., Mekata, T., Kato, T., Park, E.Y. (2020). Antigenic properties of VP15 from white spot syndrome virus in kuruma shrimp Marsupenaeus japonicus. Fish and Shellfish Immunology. 101: 152-158. DOI:10.1016/j.fsi.2020.03.061.
  5. Braak, K. (2002). Haemocytic Defence in Black Tiger Shrimp (Penaeus monodon). Wageningen University.
  6. Escobedo-Bonilla, C.M., Vega-Peña, S., Mejía-Ruiz, C.H. (2015). Efficacy of double-stranded RNA against white spot syndrome virus (WSSV) non-structural (orf89, wsv191) and structural (vp28, vp26) genes in the Pacific white shrimp Litopenaeus vannamei. Journal of King Saud University-Science. 27(2): 182-188. DOI:10.1016/ j.jksus.2014.11.004.
  7. Feng, S., Wang, C., Hu, S., Wu, Q., Li, A. (2017). Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Archives of Virology. 162(10): 2923-2936. DOI:10.1007/s00705-017-3450-x.
  8. Itsathitphaisarn, O., Thitamadee, S., Weerachatyanukul, W., Sritunyalucksana, K. (2016). Potential of RNAi applications to control viral diseases of farmed shrimp. Journal of Invertebrate Pathology. 147: 76-85. DOI: 10.1016/j.jip.2016.11.006.
  9. Jane, M., Amar, A., Amar, E. (2015). Use of immunostimulants in shrimp culture: An update. Biotechnological Advances in Shrimp Health Management in The Philipinnes. C. Marlowe., C.M. Beth., Bacano-Maningas., F.F. Fagutao. Visayas, Miagao, Iloilo, Philippines: 45-71. https:// www.researchgate.net/publication/280656134.
  10. Kiataramgul, A., Maneenin, S., Purton, S., Areechon, N., Hirono, I., Brocklehurst, T.W., Unajak, S. (2020). An oral delivery system for controlling white spot syndrome virus infection in shrimp using transgenic microalgae. Aquaculture. 521. DOI:10.1016/j.aquaculture.2020.735022.
  11. Linacero, R., Rueda, J., Vazquez, A. (1998). Quantification of DNA. In: Molecular Tools for Screening Biodiversity: Plants and Animals. Springer Netherlands. (p. 528).
  12. Liu, C.H. and Chen, J.C. (2004). Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish and Shellfish Immunology, 16(3): 321-334. DOI:10.1016/S1050- 4648(03)00113-X.
  13. Mocellin, S. and Provenzano, M. (2004). RNA interference: Learning gene knock-down from cell physiology. Journal of Translational Medicine. 2(39): 1-6. DOI:10.1186/1479-5876-2-39.
  14. Mulyaningrum, S.R.H., Parenrengi, A., Tampangallo, B.R.,  Trismawanti, I. (2018). Respons imun udang windu Penaeus monodon terhadap vaksin dsRNA VP-24 pada dosis berbeda. Jurnal Riset Akuakultur. 13(1):77-84. DOI:10.15578/jra.13.1.2018.77-84.
  15. Nilsen, P., Karlsen, M., Sritunyalucksana, K., Thitamadee, S. (2017). White spot syndrome virus VP28 specific double-stranded RNA provides protection through a highly focused siRNA population. Scientific Reports. 7(1): 1-14. DOI: 10.1038/s41598-017-01181-w.
  16. Parenrengi, A., Mulyaningrum, S.R.H., Tenriulo, A., Nawang, A. (2018). Gen penyandi viral protein 15 (VP-15) white spot syndrome virus (WSSV) dan aplikasinya sebagai vaksin rekombinan pada udang windu. Jurnal Riset Akuakultur. 13(1): 57-65. DOI:10.15578/jra.13.1.2018.57-65.
  17. Parenrengi, A., Alimuddin, A., Tenriulo, A. (2017). Characteristics of viral protein, VP-15, of white spot syndrome virus isolated from infected tiger shrimp Penaeus monodon (Fabricius, 1798). Indonesian Aquaculture Journal. 12(2): 67-75. DOI:10.15578/iaj.12.2.2017.67-75.
  18. Parenrengi, A., Tenriulo, A., Mulyaningrum, S.R.H., Lante, S., Nawang, A. (2019). Pengaruh aplikasi dsRNA VP-15 in vitro dan in-vivo terhadap sintasan dan respons imun udang windu Penaeus monodon. Jurnal Riset Akuakultur. 14(4): 213-223. DOI: 10.15578/jra.14.4.2019.213-223.
  19. Paria, A., Greeshma, S.S., Chaudhari, A., Makesh, M., Purushothaman, C.S., Rajendran, K.V. (2013). Nonspecific effect of double-stranded (ds) RNA on prophenoloxidase (proPO) expression in Penaeus monodon. Applied Biochemistry and Biotechnology. 169: 281-289. DOI:10.1007/s12010-012-9964-5.
  20. Puneeth, T.G., Akhila, D.S., Dechamma, M.M., Shreeharsha, J.M., Shivakumar, S.K., Venugopal, M.N. (2017). Comparative efficacy of dsRNA VP24, VP26, RR1 and WSV477 gene against WSSV Infection in Penaeus monodon. International Journal of Current Microbiology and Applied Sciences. 6(2): 665-674. DOI:10.20546/ijcmas.2017. 602.075.
  21. Reshi, M.L., Wu, J.L., Wang, H.V., Hong, J.R. (2014). RNA interference technology used for the study of aquatic virus infections. Fish and Shellfish Immunology. 40(1): 14-23. DOI: 10.1016/j.fsi.2014.06.008.
  22. Rowley, A.F. and Pope, E.C. (2012). Vaccines and crustacean aquaculture- A mechanistic exploration. Aquaculture. 334-337: 1-11. DOI:10.1016/j.aquaculture.2011.12.011.
  23. Sarathi, M., Simon, M.C., Ahmed, V.P.I., Kumar, S.R. and Hameed, A.S.S. (2008). Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. Marine Biotechnology. 10(2): 198-206. DOI: 10.1007/s10126-007-9052-y.
  24. Sarathi, M., Simon, M.C., Venkatesan, C., Thomas, J., Ravi, M., Madan, N., Thiyagarajan, S., Sahul Hameed, A.S. (2010). Efficacy of bacterially expressed dsRNA specific to different structural genes of white spot syndrome virus (WSSV) in protection of shrimp from WSSV infection. Journal of Fish Diseases. 33(7): 603-607. DOI:10.1111/ j.1365-2761.2010.01157.x.
  25. Solis-Lucero, G., Manoutcharian, K., Hernández-López, J., Ascencio, F. (2016). Injected phage-displayed-VP28 vaccine reduces shrimp Litopenaeus vannamei mortality by white spot syndrome virus infection. Fish and Shellfish Immunology. 55:401-406. DOI:10.1016/j.fsi.2016.05.027.
  26. Tassanakajon, A., Somboonwiwat, K., Supungul, P., Tang, S. (2013). Discovery of immune molecules and their crucial functions in shrimp immunity. Fish and Shellfish Immunology. 34(4): 954-967. DOI:10.1016/j.fsi.2012.09.021.
  27. Uma, A., Parthiban, M., Chandran, N.D.J., Thiyagarajan, B., Arasi, P.K., Koteeswaran, A. (2005). Usefulness of nested polymerase chain reaction in detection of monodon baculovirus in shrimp seeds. Indian Journal of Animal Research. 39(2): 111-114.
  28. Van Hulten, M.C.W., Reijns, M., Vermeesch, A.M.G., Zandbergen, F., Vlak, J.M. (2002). Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status of the WSSV major structural proteins. Journal of General Virology. 83(1): 257-265. DOI:10.1099/0022- 1317-83-1-257.
  29. Van Hulten, M.C.W., Witteveldt, J., Snippe, M., Vlak, J.M. (2001). White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology. 285(2): 228-233. DOI:10.1006/viro.2001.0928.
  30. Wentao, Z., Wen, L., Yunlong, Z., Danli, W., Zhongxiang, M., Getao, S. (2017). Ultrastructural and immunocytochemical analysis of circulating hemocytes from Cherax quadricarinatus (Von Martens, 1868). Indian Journal of Animal Research. 51(1): 129-134. DOI:10.18805/ ijar.v0iOF.6823.
  31. Witteveldt, J., Vermeesch, A.M.G., Langenhof, M., de Lang, A., Vlak, J. M., Van Hulten, M.C.W. (2005). Nucleocapsid protein VP15 is the basic DNA binding protein of white spot syndrome virus of shrimp. Archives of Virology. 150(6): 1121-1133. DOI:10.1007/s00705-004-0483-8.
  32. Xing, Y. and Shi, Z. (2011). Nucleocapsid protein VP15 of white spot syndrome virus colocalizes with the nucleolar proteins nucleolin and fibrillarin. Canadian Journal of Microbiology. 57(9): 759-764. DOI:https://doi.org/10.1139/w11-061.
  33. Yeh, S.P., Chen, Y.N., Hsieh, S.L., Cheng, W., Liu, C.H. (2009). Immune response of white shrimp, Litopenaeus vannamei, after a concurrent infection with white spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus. Fish and Shellfish Immunology. 26(4): 582-588. DOI:10.1016/j.fsi.2008.09.010.

Global Footprints