Effect of vegetable oil source supplementation on feed intake, nutrients digestibility and rumen biohydrogenation bacterial population in Thai Friesian dairy cows

DOI: 10.18805/ijar.B-889    | Article Id: B-889 | Page : 907-912
Citation :- Effect of vegetable oil source supplementation on feed intake, nutrients digestibility and rumen biohydrogenation bacterial population in Thai Friesian dairy cows.Indian Journal Of Animal Research.2019.(53):907-912
N. Suphrap, C. Wachirapakorn, C. Thamrongyoswittayakul and C. Wongnen naphongphot@hotmail.com
Address : Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
Submitted Date : 18-12-2017
Accepted Date : 4-03-2018

Abstract

The  investigation aimed to study the effect of vegetable oil sources   on feed intake, nutrient digestibility and biohydrogenation bacterial population in Thai Friesian dairy cows. Three fistula Thai Friesian cows with mean body weight (BW) of 600±100 kg were assigned to receive three vegetable oil sources i.e. palm oil (PO), soybean oil (SBO) and sunflower oil (SFO) included at 4 %DM in commercial concentrate. All cows were fed on different diets that contained concentrate of 1 %BW and rice straw of 1 %BW according to a 3×3 latin square design (LSD). The results revealed that dry matter digestibility (DMD) and organic matter digestibility (OMD) tended to be higher in cows fed on SBO and SFO (P=0.06). Moreover, the DNA copy numbers (copies/ml) of biohydrogenation bacteria (Ruminococcus albus) and cellulolytic bacteria (Ruminococcus flavefaciens and Prevotella ruminicola) were higher in cows fed on SBO (P<0.05). In summary, supplementation of SBO in diet resulted in a higher nutrient digestibility and rumen biohydrogenation bacteria population. 

Keywords

Biohydrogenation bacteria Cows Digestibility Vegetable oil

References

  1. AOAC (1990). Official Method of Analysis. 15th Ed., Association of Official Agriculture Chemicals, Washington, D.C. 771 p.
  2. Bremner, J.M., and Keeney. D.R (1965). Steam distillation methods of determination of ammonium, nitrate and nitrite. Anal. Chem. Acta., 32: 218-228. 
  3. Carvalho, I.P.C.d., Fiorentini G., Castagnino .P.d.S., Jesus. R.B.d., Messana J.D., Granja-Salcedo Y.T., Detmann E., Padmanabha J., McSweeney C.S. and Berchielli T. T. (2017). Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Anim. Feed Sci. Technol., 227: 142–153.
  4. Chilliard, Y., Ferlay A., Mansbridge R.M., and Doreau M. (2000). Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech., 49: 181–205.
  5. Church, D.C. (1979). Digestive physiology and nutrition of ruminants. Digestive Physiol., 1: 166-173.
  6. Crocker, C.L. (1967). Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol., 33: 361-    365.
  7. Granja-Salcedo, Y.T., de Souza V.C., Dias A.V.L., Gomez-Insuasti A.S., Messana J.D. and Berchielli T.T. (2017). Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Anim. Feed Sci. Technol., 225: 195-204.
  8. Gudla, P., AbuGhazaleh A.A., Ishlak A. and Jones K.. (2012). The effect of level of forage and oil supplement on biohydrogenation intermediates and bacteria in continuous cultures. Anim. Feed Sci. Technol., 171:108-116. 
  9. Harfoot, C.G. and Hazlewood G.P. (1997). The Rumen Microbial Ecosystem. Lipid metabolism in the rumen. In: Hobson, P.N. (Ed.) , 2nd ed. Elsevier, London, UK. pp. 382–426.
  10. Jenkins, T.C., Wallace R.J., Moate P.J and Mosley E.E.. (2008). Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci., 86: 397–412.
  11. Jing, Y.J., Wang, Y.F., Wang, M.Z., Gao J., Ouyang J.L. and Cheng L.. (2018). Effects of certain long-chain fatty acid combinations on the ruminal microbe species relating to fermentation type in vitro. Indian J. Anim. Res. Online Published: 8-02-2018 (In Press)
  12. Kearl, L.C. (1982). Nutrient requirements of ruminants in developing countries. International Feedstuffs Institute, Utah Agricultural Experiment Station, Utah State University, Logan, Utah, USA. 381 p.
  13. Kim, Y.J., Liu R.H., . Rychlik J.L and . Russell J.B. (2002). The enrichment of a ruminal bacterium (Megasphaeraelsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. App. Micro., 92: 976–982.
  14. Kong, Y., Teather, R. and Forster R.. (2010). Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol. Ecol., 74:612-622.
  15. Kongmun, P., Wanapat M., Pakdee P., Navanukraw C. and Yu Z.. (2011). Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Lives Sci., 135: 84-92.
  16. Krause, D.O., Denman S.E., Mackie R.I., Morrison M., . Rae A.L, Attwood G.T. and McSweeney C.S.. (2003). Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. Microbiol. Rev., 27:663-693.
  17. Mathew, S., Sagathevan S., Thomas J. and Mathen G. . (1997). An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian. J. Anim. Sci., 67: 805-807.
  18. Mertens, D.R. (1997). Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci., 80: 1463-1481.
  19. Nicol, G.W., Leininger S., Schleper C. and Prosser J.I.. (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol., 10: 2966-2978.
  20. NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th ed. National Academic Press. Washington, D.C. USA. 408 p.
  21. Paengkoum, P. (1998). Effects of carbohydrate and/or protein flow on voluntary feed intake, digestibility and rumen fermentation of dairy cattle receiving straw and Urea treat rice straw as a roughage source. Dissertation of Master degree in Animal Science Faculty of Agriculture, Khon Kaen University, Thailand.
  22. Paillard, D., McKain N., Rincon M.T., Shingfield K.J., Given D.I. and Wallace R.J. (2007). Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J. Appl. Microbiol., 103: 1251–1261.
  23. Palmquist, D.L. (1988). The feeding value of fats. In: Feed science (ed. ER Orskov), Elsevier Science Publisher, Amsterdam, Netherlands. pp. 293–311.
  24. Polviset, W. and Prakobsaeng N.. (2016). Feeding either palm oil or sunflower oil on nutrient digestibility and blood metabolites in crossbred Thai native x Brahman bull. Indian J. Anim. Res., 50: 377-381.
  25. Polviset, W., Wachiraprakorn C. and Yuangklang C.. (2014). Effects of fat sources on digestibility and rumen fermentation in crossbred Thai native x Brahman bulls. Indian J. Anim. Res., 48: 14-20.
  26. Potu, R.B., AbuGhazaleh A.A., Hastings D., Jones K. and Ibrahim S.A.. (2011). The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J. Microbiol., 49: 216–223.
  27. Preston, T.R. and Leng R.A.. (1987). Matching Ruminant Production Systems with Available Resources in the Tropics and Sub-Tropics. Penambul Books, Armidale: Australia. 245 p.
  28. SAS. (1996). User’s Guide: Statistic, Version 6. 4th Edition. SAS. Inst Cary, NC., USA.
  29. Shingfield, K.J., Lee M.R.F., Humphries D.J., Scollan N.D., Toivonen V., Beever D.E. and Reynolds C.K.. (2011). Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage based diets. J. Anim. Sci., 89: 3728-3741.
  30. Steel, R.G.D. and Torrie J.H.. (1980). Principles and Procedure of Statistics. New York: McGraw Hill Book Co., USA. 481 p.
  31. Suzuki, M.T., Taylor L.T. and DeLong E.F.. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 50-nuclease assays. Appl. Environ. Microb., 66:4605-4614.
  32. Van Keulen, J. and Young.B.A. (1977). Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci., 44: 282-287.
  33. Van Soest, P.J., Robertson J.B. and Lewis B.A.. (1991). Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597. 
  34. Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. 2nd Edition. Cornell University. Press, USA. 476 p.
  35. Wachirapakorn, C. (1998). An Introduction to Ruminant Nutrition and Feeding. Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Thailand. (In Thai)
  36. Wallace, R.J., Chaudhary L.C., McKain N., McEwan N.R., Richardson A.J., Vercoe P.E., Walker N.D. and Paillard D. (2006). Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett., 265: 195–201.
  37. Wanapat, M. (1990). Ruminant Nutrition. Funny Publishing: Bangkok. Thailand. (In Thai).
  38. Wongnen, C. (2016). Enhancing fiber digestion efficiency by using exogenous fibrolytic enzymes in ruminants. Doctor of Philosophy Thesis in Animal Science, Graduate School, Khon Kaen University, Thailand.
  39. Yu, Z. and Morrison M.. (2004). Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques, 36: 808-812.
  40. Zhao, T., Ma Y., Qu Y., Luo H., Liu K., Zuo Z. and Lu.X. (2016). Effect of dietary oil sources on fatty acid composition of ruminal digesta and populations of specific bacteria involved in hydrogenation of 18-carbon unsaturated fatty acid in finishing lambs. Small Ruminant Res., 144: 126–134. 

Global Footprints