Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 11 (november 2020) : 1347-1349

Immunohistochemical detection of gremlin-2 protein in hen ovarian prehierarchical follicle cells

T.L. Tyasi, N. Qin, X. Niu, X. Chen, H. Zhu, X. Sun, F. Zhang, R. Xu
1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Avenue 2888, Changchun City of Jilin Province, 130118, P. R. China.
Cite article:- Tyasi T.L., Qin N., Niu X., Chen X., Zhu H., Sun X., Zhang F., Xu R. (2018). Immunohistochemical detection of gremlin-2 protein in hen ovarian prehierarchical follicle cells. Indian Journal of Animal Research. 54(11): 1347-1349. doi: 10.18805/ijar.B-844.
The objective of this work was to investigate the distribution of the gremlin-2 (GREM2) protein in various cells of chicken ovarian prehierarchical follicles (6-8 mm in diameter). Chickens (n=10) were slaughtered at the age of 21 weeks and ovarian prehierarchical follicles were removed from the hen ovary. An immunohistochemical analysis was performed to examine the localization of GREM2 protein and the results showed that GREM2 protein is distributed in the chicken prehierarchical ovarian follicle cells and the expression varied with the cell types. GREM2 protein was more dominant in granulosa cells (GCs) and oocytes (OC) (P<0.05) than other cells in the chicken prehierarchical ovarian follicles. The immunohistochemical study suggests that GREM2 protein might play an important role in GCs proliferation and OC maturation of chicken prehierarchical ovarian follicles during growth and development.
  1. Adzemovic, Z.M., Zeitelhofer, M., Leisser, M., Kock, U., Kury, A. and Olsson, T. (2016). Immunohistochemical analysis in the rat central nervous system and peripheral lymph node tissue sections. J. Visualized Exp., 117: e50425.
  2. Arsenic, R. (2014). Immunohistochemical analysis of PDK1 expression in breast cancer. Diag. Path., 9: 82.
  3. Fukami, T., Nakajima, M., Matsumoto, I., Zen, Y., Oda, M. and Yokoi, T. (2010). Immunohistochemical analysis of CYP2A13 in various types of human lung cancers. Canc. Sci., 101 (4): 1024–1028.
  4. Huillard, E. and Marx, M. (2004). Localized Expression of drm/gremlin in the Central Nervous System of the Chicken Embryo. Dev. Dynamics., 229: 688–694.
  5. Khoka, M.K., Hsu, D., Brunet, L.J., Dionne, M.S. and Harland, R.M. (2003). Gremlin is the BMP antagonist required for maintenance pf Shh and Fgf signals during limb patterning. Nature Genet., 34: 303-307.
  6. Klco, J.M., Kulkarni, S., Kreisel, F.H., Nguyen, T.T., Hassan, A. and Frater, J.L. (2015). Immunohistochemical analysis of monocytic leukemias: Usefullness of CD14 and kruppel like factor 4, a novel monocyte marker. American J. Clin. Path., 135 (5): 720–730.
  7. Miller, M.K., Unger, P.D. and Bleiweiss, I.J. (2001). Immunohistochemical analysis of prostate specific antigen in breast cancer. Breast Canc. Res. Treat., 68 (2): 111–116.
  8. Mizakami, T., Kamachi, H., Mitsuhashi, T., Tsuruga, T., Hatanaka, Y., Kamiyama, T., Matsuno, Y. and Taketomi, A. (2014). Immunohistochemical analysis of cancer stem cell markers in pancreatic adenocaicinoma patients after neoadjuvant chemoradiotherapy. BMC Cancer., 14: 687.
  9. Nilsson, E.E., Larsen, G. and Skinner, M.K. (2014). Roles of Gremlin 1 and Gremlin 2 in regulating ovarian primordial to primary follicle transition. Reproduction., 147: 865–874.
  10. Olsza´nska, B., Malewska, A. and Stepi´nska, U. (1996). Maturation and ovulation of Japanese quail oocytes under in vitro conditions. British Poult. Sci., 37: 929–935.
  11. Onagbesam, O.M., Gullick, W., Woolveridge, I. and Peddie, M.J. (1994). Immunohistochemical localization of epidermal growth factor receptors, epidermal-growth-factor-like and transforming growth factor-á-like peptides in chicken ovarian follicles. J. Reprod. Fert., 102: 147–153.
  12. Pangas, S.A., Jorgez, C.J. and Matzuk, M.M. (2004). Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J. Biol. Chem., 279: 32281–32286.
  13. Peddy, H.S., Dirkkeene, C., Jian-Amadi, A. and Cimon, P.S. (2017). Immunohistochemical profiling including beta-catenin in conjuctival melanocytic lesions. Exp.Mol. Path., 201: pii: 50014–4800.
  14. Qin, N., Fan, X.C., Zhang, Y.Y., Xu, X.X., Tyasi, T.L., Jing, Y., Mu, F., Wei, M.L. and Xu, R.F. (2015). New insights into implication of the SLIT/ROBO pathway in the prehierarchical follicle development of hen ovary. Poult. Sci., 94 (10): 2235–2246
  15. Sudo, S., Avsian-Kretchmer, O., Wang, L.S. and Hsueh, A.L. (2004). Protein related to DAN and Cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation. J. Biol. Chem., 279: 23134–23141.
  16. Tyasi, T.L., Qin, N., Jing, Y., Mu, F., Zhu, H., Liu, D., Yuan, S. and Xu, R. (2017). Assessment of relationship between body weight and body measurement traits of indigenous Chinese Dagu Chickens using path analysis. Indian J. Anim. Res., 51 (3): 588–    593.
  17. Zheng, W. (2005). Experimental Protocols for Medical Molecular Biology Vin Chinese and English. Peking Union Medical College Press, Beijing (in Chinese and English). 

Editorial Board

View all (0)