Effects of dietary Bacillus amyloliquefaciens on mucosal immunity, cecal volatile fatty acids and microbial diversity in broiler chickens

DOI: 10.18805/ijar.B-821    | Article Id: B-821 | Page : 77-83
Citation :- Effects of dietary Bacillus amyloliquefaciens on mucosal immunity, cecal volatile fatty acids and microbial diversity in broiler chickens.Indian Journal Of Animal Research.2019.(53):77-83
G.T. Cao, X.A. Zhan, L.L. Zhang, X.F. Zeng, A.G. Chen, and C.M. Yang yangcaimei2012@163.com
Address : College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China.
Submitted Date : 13-09-2017
Accepted Date : 16-05-2018

Abstract

This trial was conducted to investigate the adhesion of Bacillus amyloliquefaciens to Caco-2 cells, the effects of Bacillus amyloliquefaciens on the mucosal immunity, cecal volatile fatty acids and microbial diversity in broiler chickens. Three hundred and sixty 1-d-old Ross 308 chicks were randomly divided into 3 dietary treatments groups, which birds fed with basal diet, basal diet supplemented with colistine sulfate, and basal diet supplemented with Bacillus amyloliquefaciens. Polymerase chain reaction denaturing gradient gel electrophoresis was used to analyze the change of cecal microflora, and Gas Chromatography was used to analyze the cecal volatile fatty acids. Data showed that: 1) Bacillus amyloliquefaciens had a good adhesion ability to epithelial cells; 2) the supplementation of Bacillus amyloliquefaciens significantly increased the concentration of ileal mucosal secretory IgA and interleukin 6, decreased (P<0.05) the concentration of tumor necrosis factor-a; 3) resulted in the change of cecal microbial community, higher levels of acetic acid, methylacetic and isovaleric acid in the birds. Thus, we considered that Bacillus amyloliquefaciens enhanced the mucosal immunity, increased the cecal concentration of major volatile fatty acids and the diversity microflora community in broilers. 

Keywords

Bacillus amyloliquefaciens Broiler chickens Cecal microflora Mucosal immunity Volatile fatty acids.

References

  1. Ahmed, S.T., Islam, M.M., Mun, H.S., Sim, H.J., Kim, Y.J., Yang, C.J. (2014). Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poultry Science, 93: 1963-1971.
  2. Al-Fataftah, A.R., Abdelqader, A. (2014). Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Animal Feed Science and Technology, 198: 279-285.
  3. An, B.K., Cho, B.L., You, S.J., Paik, H.D., Chang, H..I, Kim, S.W., Yun, C.W., Kang, C.W. (2008). Growth performance and antibody response of broiler chicks fed yeast derived B-glucan and single-strain probiotics. Asian-Australasian Journal of Animal Sciences, 7: 1027-1032.
  4. Batista, M.T., Souza, R.D., Paccez, J.D., Luiza, W.B., Ferreiraa, E.L., Cavalcanteb, R.C.M., Ferreiraa, R.C.C., Ferreiraa, L.C.S. (2014). Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infection and Immunity, 82: 1414-1423.
  5. Bjerrum, L., Engberg, R.M., Leser, T.D., Jensen, B.B., Finster, K., Pedersen, K. (2006). Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Science, 85: 1151-1164.
  6. Capcarova, M., Hascik, P., Kolesarova, A., Kacaniova, M., Mihok, M., Pal, G. (2011). The effect of selected microbial strains on internal milieu of broiler chickens after peroral administration. Research Journal of Veterinary Sciences, 91: 132-7.
  7. Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Sukumaran, R.K., Pandey, A. (2008). Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 99: 4597-4602.
  8. Gracia, M.I., Aranibar, M., Lazaro, R., Medel, P., Mateos, G.G. (2003). Alpha-amylase supplementation of broiler diets based on corn. Poultry Science, 82: 436-442.
  9. Hong, H.A., Duc, L.H., Cutting, S.M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews, 29: 813-    835.
  10. Koli, D., Kadam, M., Gole, M., Hajare, S., Yeskal, A., Kolte, S., Kurkure, N. (2017). Efficacy of bacillus subtilis (gallipro) supplementation in clostridium perfringens challenged necrotic enteritis of broiler chicken. Indian Journal of Animal Research, (DOI: 10.18805/ijar.B-3253 ).
  11. Lee, K.W., Kim, D.K., Lillehoj, H.S., Jang, S.I., Lee, S.H. (2015). Immune modulation by Bacillus subtilis-based direct-fed microbials in commercial broiler chickens. Animal Feed Science and Technology, 200: 76-85.
  12. Lee, K.W., Lee S.H., Lillehoj H.S., Li G.X., Jang S.I., Babu U.S., Park M.S., Kim D.K., et al., (2010). Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poultry Science, 89: 203-216.
  13. Lei, X., Piao, X., Ru, Y., Sim, H.J., Kim, Y.J., Yang. C.J. (2015). Effect of Bacillus amyloliquefaciens-based direct-fed microbial on performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. Asian-Australasian Journal of Animal Sciences, 28: 239-246.
  14. Luo, J., Zheng, A., Meng, K., Chang, W., Bai, Y., Li, K., Cai, H., Liu, G., Yao, B. (2013). Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. Journal of Proteomics, 91: 226-241.
  15. Molnár, A.K., Podmaniczky, B., Kürti, P., Tenk, I., Glávits, R., Virág, G.Y., Szabó. Z.S. (2011). Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. British Poultry Science, 52: 658-665.
  16. NRC. (1994). Nutrient requirements of poultry. Ninth Revised Edition, Washington, DC: National Academy Press.
  17. Rajput, I.R., Li, L.Y., Xin, X., Wu, B.B., Juan, Z.L., Cui, Z.W., Yu, D.Y., Li, W.F. (2013). Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poultry Science, 92: 956-965.
  18. Shivaramaiah, S., Pumford, N.R., Morgan, M.J., Wolfenden, R.E., Wolfenden, A.D., Torres-Rodriguez, A., Hargis, B.M., Téllez, G. (2011). Evaluation of Bacillus species as potential candidates for direct-fed microbials in commercial poultry. Poultry Science, 90: 1574-1580.
  19. Sun, H., Tang, J.W., Fang, C.L., Yao, X.H., Wu, Y.F., Wang, X., Feng, J. (2013). Molecular analysis of intestinal bacterial microbiota of broiler chickens fed diets containing fermented cottonseed meal. Poultry Science, 92: 392-401.
  20. Svihus, B., Choct, M., Classen, H.L. (2013). Function and nutritional roles of the avian caeca: A review. World’s Poultry Science Journal, 69: 249-263.
  21. Thanh, N.T., Loh, T.C., Foo, H.L., Hair-Bejo, M., Azhar, B.K. (2009). Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. British Poultry Science, 50: 298-306. 

Global Footprints