Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.43

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 1 (january 2020) : 47-52

Evaluation of ruminal crude protein degradation of common feeds used in temperate climates

Marie Koukolová, Petr Homolka, Veronika Koukolová, Filip Jancík
1Institute of Animal Science, Prátelství 815, Prague-Uhrínìves, 104 00, Czech Republic
Cite article:- Koukolová Marie, Homolka Petr, Koukolová Veronika, Jancík Filip (2018). Evaluation of ruminal crude protein degradation of common feeds used in temperate climates. Indian Journal of Animal Research. 54(1): 47-52. doi: 10.18805/ijar.B-739.
The objective of this study was to evaluate the nutritional value of different feeds using chemical analysis and procedures to determine the nitrogen fractions expressed in g/kg of crude protein (CP) using a Cornell system. The experiment includes samples of common feeds used for ruminants in the Czech Republic. Fraction A is most commonly available from silages (average 468.2 g/kg CP) and least available in soybean (83.9 g/kg CP). In contrast, rapidly degradable protein (fraction B1) showed the lowest values in silages (average 31.5 g/kg CP) and the highest values in rapeseed cakes (average 195.7 g/kg CP) and lupines (average 308.7 g/kg CP). The intermediately degradable protein fraction B2 had a high value in almost all of the samples and especially in lupines (average B2 fraction 384.7 g/kg CP). The remaining fractions (B3 and C) represent slowly degraded proteins and unavailable proteins and represented a very small part of CP (average 18.9 and 34.9 g/kg CP, respectively). A strong relationship was found between fraction A and soluble protein (SOLP) and fraction B1 and SOLP. Other strong correlations were found between fraction B2 and CP, B2 and insoluble protein (IP), B3 and IP and B3 and neutral detergent insoluble nitrogen (NDIN). 
  1. Alzueta, C., Caballero, R., Rebolé, A., Treviño, J. and Gil, A. (2001). Crude protein fractions in common vetch (Vicia sativa L.) fresh forage during pod filling. J. Anim. Sci., 79: 2449-2455.
  2. AOAC. (2005). Official Methods of Analysis, 18th edition. AOAC, Gaithersburg, MD, USA.
  3. Bertipaglia, L.M.A., de Melo, G.M.P, Sugohara, A., de Melo, W.J. and Bertipaglia, L.A. (2008). Chemical changes in soybean and corn processed by extrusion. R. Bras. Zootec., 11: 2003-2010.
  4. Bovera, F., Spanghero, M., Galassi, G., Masoero, F. and Buccioni, A. (2003). Repeatability and reproducibility of the Cornell Net Carbohydrate and Protein System analytical determinations. Ital. J. Anim. Sci., 2: 41-50.
  5. Cazzato, E., Laudadio, V., Stellacci, A.M., Ceci, E. and Tufarelli, V. (2012). Influence of sulphur application on protein quality, fatty acid composition and nitrogen fixation of white lupin (Lupinus albus L.). Eur. Food Res. Technol., 5: 963-969.
  6. Choi, C.W., Ahvenjarvi, S., Vanhatalo, A., Toivonen, V. and Huhtanen, P. (2002). Quantitation of the flow of soluble non-ammonia nitrogen entering the omasal canal of dairy cows fed grass silage based diets. Anim. Feed Sci. Technik., 96: 203-220.
  7. Chrenková, M., Cerešòáková, Z., Weisbjerg, M.R., Formelová, Z., Poláèiková, M. and Vondráková, M. (2014). Characterization of proteins in feeds according to the CNCPS and comparison to in situ parameters. Czech J. Anim. Sci., 59: 288-295.
  8. Fox, D.G., Tedeschi, L.O., Tylutki, T.P., Russell, J.B., Van Amburgh, M.E., Chase, L.E., Pell, A.N. and Overton, T.R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol., 112: 29-78.
  9. Givens, D.I. and Rulquin, H. (2004). Utilisation by ruminants of nitrogen compounds in silage-based diets. Anim. Feed Sci. Tech., 114: 1-18.
  10. Gupta, A., Singh, S., Kundu, S.S. and Jha, N. (2011). Evaluation of tropical feedstuffs for carbohydrate and protein fractions by CNCP system. Indian J. Anim. Sci., 81: 1154-1160.
  11. Homolka, P., Koukolová, V., Podsedníèek, M. and Hlaváèková, A. (2012). Nutritive value of red clover and lucerne forages for ruminants estimated by in vitro and in vivo digestibility methods. Czech J. Anim. Sci., 57: 454-468. 
  12. Hvelplund, T. and Weisbjerg, M.R. (2000). In situ techniques for the estimation of protein degradability and postrumen availability. In: Forage evaluation in ruminant nutrition. [Eds: Givens D.I., Owen, E., Axford, R.F.E. & Omed H.M.,] CABI Publishing, Wallingford, UK. pp. 233-258.
  13. Katsande, S., Baloyi1, J.J., Nherera-Chokuda, F.V., Ngongoni, N.T. and Matope, G. (2015). In vitro degradability of forage legumes using the AnkomRF gas technique. Indian J. Anim. Res., 49: 168-172.
  14. Kelzer, J.M., Kononoff, P.J., Tedeschi, L.O., Jenkins, T.C., Karges, K. and Gibson, M.L. (2010). Evaluation of protein fractionation and ruminal and intestinal digestibility of corn milling co-products. J. Dairy Sci., 93: 2803-2815.
  15. Kumar, M.Y. and Ravi, A. (2015). Effect of processing on the protection of highly degradable protein sources in steers. Indian J. Anim. Res., 49: 778-782.
  16. Lanzas, C., Broderick, G.A. andFox, D.G. (2008). Improved feed protein fractionation schemes for formulating rations with the Cornell Net Carbohydrate and Protein System. J. Dairy Sci., 91: 4881-4891.
  17. Licitra, G., Hernandez, T.M. and Van Soest, P.J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Tech., 57: 347-358.
  18. Mahmood, S., Ajmal Khan, M., Sarwar, M., Nisa, M., Lee, W.S., Kim, S.B., Hur, T.Y., Lee, H.J. and Kim, H.S. (2007). Use of chemical treatments to reduce tannins and trypsin inhibitor contents in salseed (Shorea robusta) meal. Asian-Aust. J. Anim., 20: 1462-1467.
  19. Mikolayunas-Sandrock, C., Armentano, L.E., Thomas, D.L. and Berger, Y.M. (2009). Effect of protein degradability on milk production of dairy ewes. J. Dairy Sci., 92: 4507-4513.
  20. Parashuramulu, S., Swain, P.S. and Nagalakshmi, D. (2013). Protein fraction and in vitro digestibility of Azolla in ruminants. J. Anim. Feed Res., 3: 129-132.
  21. Polat, M., ªayan, Y. and Özelçam, H. (2014). Estimating in situ effective crude protein degradability with Cornell Net Carbohydrate and Protein System parameters in energy-rich feedstuffs for ruminants. Kafkas Univ. Vet. Fak., 20: 259-265. 
  22. Rinne, M. and Nykanen, A. (2000). Timing of primary growth harvest affects the yield and nutritive value of timothy-red clover mixtures. Agri. Food Sci. Finland, 9: 121-134.
  23. SAS. (2003). SAS institute, SAS version 9.3 edn. SAS Institute Inc., Cary. NC. USA.
  24. Schwab, C.G., Tylutki, T.P., Ordway, R.S., Sheaffer, C. and Stern, M.D. (2003). Characterization of proteins in feeds. J. Dairy Sci., 86: E88-E103.
  25. Straková, E., Suchý, P., Veèerek, V., Šerman, V, Mas, N. and Jùzl, M. (2006). Nutritional composition of seeds of the genus Lupinus. Acta Vet. Brn., 75: 489-493.
  26. Swain, P.S., Rao, D.S., Nagalakshmi, D., Mahender, M. and Ray, S. (2016). Nutritional evaluation of pulse screenings by in vitro gas production technique. Indian J. Anim. Res., 50: 705-710.
  27. Valderrama, X. and Anrique, R. (2011). In situ rumen degradation kinetics of high-protein forage crops in temperate climates. Chil. J. Agr. Res., 71: 572-577. 
  28. Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. 2nd edition. Cornell University Press, Ithaca, NY, USA. pp. 476.
  29. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597. 

Editorial Board

View all (0)