Analysis of experimental mouse PRNP genetic polymorphisms and their susceptibility to prion diseases

DOI: 10.18805/ijar.v0iOF.9145    | Article Id: B-731 | Page : 367-372
Citation :- Analysis of experimental mouse PRNP genetic polymorphisms and their susceptibility to prion diseases.Indian Journal Of Animal Research.2018.(52):367-372
Feng GUAN, Zhao Wei CAI, Jun Tao AI and Jin ZHAO zhaojin@cjlu.edu.cn
Address : College of Life Sciences, China Jiliang University, Hangzhou-310 018, China
Submitted Date : 11-03-2017
Accepted Date : 12-07-2017

Abstract

Research studies showed that the polymorphisms in prion protein gene (PRNP) were associated with susceptibility to prion diseases in several animals, including humans and mouse. Several mouse strains carried natural PRNP mutations which had been identified and these could provide as  animal models for human prion diseases. In this study, the genetic polymorphisms of PRNP in six common mouse strains were investigated. The experimental mice included KM mouse, ICR mouse, DBA mouse, C3H/He mouse, C57BL mouse and BALB mouse. The results showed only one new polymorphism was identified compared with the reference sequence. The identified new mutation site was C564T and it was homozygous, but this locus did not result in amino acid change. Sequence analyses suggested that these six mouse strains were susceptible to prion diseases and are suitable as susceptibility models of prion diseases. 

Keywords

Gene mutation Genetic polymorphism Mouse model Prion protein gene.

References

  1. Amemori, T., Jendelova, P., Ruzicka, J., Urdzikova L. M. and Sykova. E. (2015). Alzheimer’s Disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci. 16, 26417-26451.
  2. Asante, E. A., Grimshaw, A., Smidak, M., Jakubcova, T., Tomlinson, A., Jeelani, A., Hamdan, S., et al.(2015). Transmission properties of human prp 102l prions challenge the relevance of mouse models of GSS. PLoS Pathog. 11, e1004953.
  3. Bajsarowicz, K., Ahn, M., Ackerman, L., Dearmond, B. N., Carlson G. and DeArmond. S. J. (2012). A brain aggregate model gives new insights into the pathobiology and treatment of prion diseases. J Neuropathol Exp Neurol. 71, 449-466.
  4. Bruce, M. E., Boyle, A., Cousens, S., McConnell, I., Foster, J., Goldmann W. and Fraser. H. (2002). Strain characterization of natural sheep scrapie and comparison with BSE. J Gen Virol. 83: 695-704.
  5. Carlson, G. A., Kingsbury, D. T., Goodman, P. A., Coleman, S., Marshall, S. T., DeArmond, S., Westaway D. and Prusiner. S. B. (1986). Linkage of prion protein and scrapie incubation time genes. Cell. 46, 503-511.
  6. Cheng, J. H., Chou, H. T., Lee M. S. and Sheu. S. C. (2016). Development of qualitative and quantitative PCR analysis for meat adulteration from RNA samples. Food Chem. 192: 336-342.
  7. Choudhary, S., Ahlawat, S. P. S., Gupta S. C. and Gupta. N. (2013). Determination of PrP locus SNPs in Garole sheep breed for scrapie. Indian Journal of Animal Research. 47, 147-151.
  8. Choudhary, S. and Choudhary. M. (2013). Scrapie: a neuro degenerative disease in sheep - a review. Agricultural Reviews. 34: 79-85.
  9. Corda, E., Thorne, L., Beck, K. E., Lockey, R., Green, R. B., Vickery, C. M., Holder, T. M., Terry, L. A., Simmons M. M. and Spiropoulos. J. (2015). Ability of wild type mouse bioassay to detect bovine spongiform encephalopathy (BSE) in the presence of excess scrapie. Acta Neuropathol Commun. 3: 21.
  10. Cortez, L. M. and Sim, V. L. (2013). Implications of prion polymorphisms. Prion, 7, 276-279.
  11. Fernandez-Borges, N., S. R. Elezgarai, H. Erana and J. Castilla. 2013. Animal models for testing anti-prion drugs. Curr Top Med Chem. 13: 2504-2521.
  12. Fernandez-Borges, N., Erana, H., Venegas, V., Elezgarai, S. R., Harrathi C. and Castilla. J. (2015). Animal models for prion-like diseases. Virus Res. 207: 5-24.
  13. Friedman-Levi, Y., Meiner, Z., Canello, T., Frid, K., Kovacs, G. G., Budka, H., Avrahami. D. and Gabizon. R. (2011). Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease. PLoS Pathog. 7, e1002350.
  14. Geschwind, M. D. (2015). Prion Diseases. Continuum (Minneap Minn). 21: 1612-1638.
  15. Ghate, P. S., Sidhar, H., Carlson G. A. and Giri. R. K. (2014). Development of a novel cellular model of Alzheimer’s disease utilizing neurosphere cultures derived from B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J embryonic mouse brain. Springerplus. 3: 161.
  16. Gimbel, D. A., Nygaard, H. B., Coffey, E. E., Gunther, E. C., Lauren, J., Gimbel Z. A. and Strittmatter. S. M. (2010). Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci. 30: 6367-6374.
  17. Gouras, G. K., Olsson T. T. and Hansson. O. (2015). beta-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics. 12: 3-11.
  18. Gunther, E. C. and Strittmatter. S. M. (2010). Beta-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J Mol Med (Berl). 88, 331-338.
  19. Jeong, B. H. and Y. S. Kim. (2014). Genetic studies in human prion diseases. J Korean Med Sci. 29: 623-632.
  20. Karamanos, T. K., Kalverda, A. P., Thompson G. S. and Radford. S. E. (2015). Mechanisms of amyloid formation revealed by solution NMR. Prog Nucl Magn Reson Spectrosc. 88-89, 86-104.
  21. Kellett, K. A. and Hooper. N. M. (2009). Prion protein and Alzheimer disease. Prion. 3: 190-194.
  22. Kessels, H. W., Nguyen, L. N., Nabavi S. and Malinow. R. (2010). The prion protein as a receptor for amyloid-beta. Nature. 466, E3-    4; discussion E4-5.
  23. Kingsbury, D. T., Kasper, K. C., Stites, D. P., Watson, J. D., Hogan R. N. and Prusiner S. B.. (1983). Genetic control of scrapie and Creutzfeldt-Jakob disease in mice. J Immunol. 131: 491-496.
  24. Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert J. W. and Strittmatter. S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 457: 1128-1132.
  25. Lee, Y. H., Sohn, H. J., Kim, M. J., Kim, H. J., Park, K. J., Lee, W. Y., Yun, E. I., Tark, D. S., Choi, Y. P., Cho I. S. and Balachandran. A. (2013). Experimental chronic wasting disease in wild type VM mice. J Vet Med Sci. 75: 1107-1110.
  26. Lloyd, S. E., Thompson, S. R., Beck, J. A., Linehan, J. M., Wadsworth, J. D., Brandner, S., Collinge J. and Fisher. E. M. (2004). Identification and characterization of a novel mouse prion gene allele. Mamm Genome. 15: 383-389.
  27. Moore, R. C., Hope, J., McBride, P. A., McConnell, I., Selfridge, J., Melton D. W. and Manson. J. C. (1998). Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat Genet. 18: 118-125.
  28. Morales, R., Bravo-Alegria, J., Duran-Aniotz C. and Soto. C. (2015). Titration of biologically active amyloid-beta seeds in a transgenic mouse model of Alzheimer’s disease. Sci Rep. 5, 9349.
  29. Munoz-Nieto, M., Ramonet, N., Lopez-Gaston, J. I., Cuadrado-Corrales, N., Calero, O., Diaz-Hurtado, M. J., Ipiens, R., Ramon y Cajal, S., de Pedro-Cuesta J. and Calero. M. (2013). A novel mutation I215V in the PRNP gene associated with Creutzfeldt-    Jakob and Alzheimer’s diseases in three patients with divergent clinical phenotypes. J Neurol. 260: 77-84.
  30. Probsthensch, N. M., Sun, C. L., Berg, D. V. D., Ceschi, M., Koh W. P. and Yu. M. C. (2013). Determination of alleles of the ovine PrNP gene using PCR single strand conformational polymorphism analysis in malpira sheep. Indian Journal of Animal Research. 47: 265-267.
  31. Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science. 216: 136-144.
  32. Risse, E., Nicoll, A. J., Taylor, W. A., Wright, D., Badoni, M., Yang, X., Farrow M. A. and Collinge. J. (2015). Identification of a Compound That Disrupts Binding of Amyloid-beta to the Prion Protein Using a Novel Fluorescence-based Assay. J Biol Chem. 290: 17020-17028.
  33. Sassi, C., Nalls, M. A., Ridge, P. G., Gibbs, J. R., Ding, J., Lupton, M. K., Troakes, C., Lunnon, S. Al-Sarraj, K. S. Brown, C. Medway, N. Clement, J. Lord, J. Turton, J. Bras K., Almeida, M. R., Holstege, H., Louwersheimer, E., van der Flier, W. M., Scheltens, P., Van Swieten, J. C., Santana, I., Oliveira, C., Morgan, K.J., Powell, F., Kauwe, J. S., Cruchaga, C., Goate, A. M., Singleton, A. B., Guerreiro R. and Hardy. J. (2016). ABCA7 p.G215S as potential protective factor for Alzheimer’s disease. Neurobiol Aging. 46: 235.e231-239.
  34. Shirai, T., Saito, M., Kobayashi, A., Asano, M., Hizume, M., Ikeda, S., Teruya, K., Morita M. and Kitamoto. T. (2014). Evaluating prion models based on comprehensive mutation data of mouse PrP. Structure. 22: 560-571.
  35. Smid, J., Landemberger, M. C., Bahia, V. S., Martins V. R. and Nitrini. R. (2013). Codon 129 polymorphism of prion protein gene in is not a risk factor for Alzheimer’s disease. Arq Neuropsiquiatr. 71: 423-427.
  36. Thies, W. and Bleiler. L. (2013).Alzheimer’s disease facts and figures. Alzheimers Dement. 9: 208-245.
  37. Um, J. W. and Strittmatter. S. M. (2013). Amyloid-beta induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion. 7: 37-41.
  38. Viola, K. L. and Klein. W. L. (2015). Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 129: 183-206.
  39. Visanji, N. P., Brooks, P. L., Hazrati L. N. and Lang. A. E. (2013). The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 1: 2.
  40. Westaway, D., Goodman, P. A., Mirenda, C. A., McKinley, M. P., Carlson G. A. and Prusiner. S. B. (1987). Distinct prion proteins in short and long scrapie incubation period mice. Cell. 51: 651-662.
  41. Westaway, D. and Prusiner. S. B. (1986). Conservation of the cellular gene encoding the scrapie prion protein. Nucleic Acids Res. 14: 2035-2044.
  42. Wisniewski, T. and Drummond. E. (2016). Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines. 15: 401-415. 

Global Footprints