Indian Journal of Animal Research
Chief EditorK.M.L. Pathak
Print ISSN 0367-6722
Online ISSN 0976-0555
NAAS Rating 6.50
SJR 0.263
Impact Factor 0.4 (2024)
Chief EditorK.M.L. Pathak
Print ISSN 0367-6722
Online ISSN 0976-0555
NAAS Rating 6.50
SJR 0.263
Impact Factor 0.4 (2024)
Effect of dicarboxymethyl trisodium alginate on the expression of BMP-7 protein in bone tissues of rats with traumatic femoral neck fracture
Submitted07-06-2016|
Accepted10-08-2016|
First Online 26-10-2016|
Bone morphogenetic protein-7 (BMP-7) is a pivotal skeletal growth factor. Sodium alginate (SA) is a natural polysaccharide polymer extracted from brown alga. Partial uronic acid units of sodium alginate can be transformed into aldehyde groups, namely dicarboxymethyl trisodium alginate (DCMTSA). In this investigation, rats with traumatic femoral neck fractures were selected. The rats treated with dicarboxymethyl trisodium alginate intervention were assigned to the experimental group, those treated with sodium alginate intervention were in the control group, and those receiving no medical intervention were in the placebo group. The expression of BMP-7 at both the protein and mRNA levels in the rat fracture tissues in all three groups was quantitatively detected by immunohistochemicals SP and RT-PCR. Results revealed that both dicarboxymethyl trisodium alginate and sodium alginate induced the up-regulation of BMP-7 expression. However, the effect of dicarboxymethyl trisodium alginate was superior to that of sodium alginate. Therefore, dicarboxymethyl trisodium alginate can be used to promote the release of BMP-7 from bone cells and contribute to the bone union in traumatic femoral neck fracture in rat models.
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.