Allelic diversity of DQA2 exon 2 gene in Egyptian goat populations

DOI: 10.18805/ijar.v0iOF.7660    | Article Id: B-537 | Page : 1101-1106
Citation :- Allelic diversity of DQA2 exon 2 gene in Egyptian goat populations .Indian Journal of Animal Research.2018.(52):1101-1106

Sahar S. Ahmed, Salah M. Abdel-Rahman, Paul J. Grobler and Antoinette Kotzé

Address :

Department of Cell Biology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza , Egypt.

Submitted Date : 19-05-2016
Accepted Date : 7-11-2016


The study aimed to assess the genetic diversity of 2-decyl-4-quinazolinyl amine exon2 (DQA2 exon2) gene among the Egyptian goat populations from different agro-climatic areas. Data of diseases distribution as well as blood samples were collected. The data collected for diseases distribution showed differences in the types of diseases between the agro-climatic areas. The Single Strand Conformation Polymorphism technique (SSCP) was used to assess the genetic diversity of DQA2 exon2 gene among the goat populations. The results showed that the DQA2 exon2 gene locus displayed 21 alleles with different frequencies in each of goat population. The gene diversity values among the populations ranged from 0.950± 0.022 to 0.887± 0.033. The difference between the most southern population (Aswan) and the remaining populations translate to significant (P< 0.05) differentiation for only one population pair (Aswan – Baladi, with FST= 0.055; P= 0.001). Scrutiny of allele composition in these two goat populations showed unique alleles in each population (six in Aswan and four in Baladi). The results of the study suggested that the allelic numbers and allelic composition for the DQA2 exon2 gene among the Egyptian goat populations showed diversity in the immune gene due to the different pathogens exposure.


DQA2 exon2 Genetic diversity Goat Major Histocompatibility Complex SSCP.


  1. Bassam, B. J., Caetano-Anolles, G. and Gresshoff, P. M. (1991): Fast and sensitive silver taining of DNA in polyacrylamide gel. Annals of Biochemi.196: 80-83.
  2. Cutrera, A. P. and Lacey, E. A. (2006): Major histocompatibility complex variation in talas tuco-tucos: the influence of demography on selection. Journal Mammal. 87: 706-716.
  3. Excoffier, L., Laval, G. and Schneider, S. (2005): Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Berne (Switzerland): Institute of Zoology, University of Berne.
  4. Hickford, J. G.H., Zhou, H., Slow, S. and Fang Q. ( 2004): Diversity of the ovine DQA2 gene. J.of Ani.Scien. 82:1553-    1563.
  5. Ibeagha-Awemu, E. M., Kgwatalala, P., Ibeagha. A. E. and Zhao, X. (2008): A critical analysis of disease-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mammalian Geno.19: 226–245.
  6. John, S. W., Weitzner, G., Rozen, R. and Scriver, C. R. (1991): A rapid procedure for extracting genomic DNA from leukocytes. Nucleic Acid Rese. 19: 408-412.
  7. Kennedy, L. J., Modrell, A., Groves, P., Wei, Z., Single, R.M., Happ, G. M. (2010): Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds. Inter. J. of Mmuno. 1: 11 pp.
  8. Miller, H. C., Allendorf, F. and Daugherty, C. H. (2010): Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.). Molecular Ecol. 19:    3894–3908.
  9. Nei, M. (1987): Molecular Evolutionary Genetics. Columbia University Press, New York, NY, USA.
  10. O’Brien, S. J., Roelke, M. E., Marker, L., Newman, A., Winkler, C. A., Meltzer, D., Colly, L., Evermann, J. F., Bush, M. and Wildt, D. E. (1985): Genetic basis for species vulnerability in the cheetah. Scien. 227: 1428.
  11. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. and Sekiya, T. (1989): Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Scien. 86: 2766–2770.
  12. Piertney, S. B. and Olivier, M. K. (2006): The evolutionary ecology of the major histocompatibility complex. Heredit. 96: 7-21.
  13. Radwan, J., Kawalko, A., Wojcik, J. M. and Babik, W. (2007): MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus. Molecular Ecolo.16: 531-540.
  14. Santucci, F., Ibrahim, K. M., Bruzzoneand, A. and Hewit, G. M. (2007): Selection on MHC-linked microsatellite loci in sheep populations. Heredit. 99: 340–348.
  15. Siddle, H. V., Sanderson, C. and Belov, K. (2007): Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogen. 59: 753-760.
  16. Smetko, A., Soudre, A., Silbermayr, K., Müller, S., Brem, G., Hanotte, O., Boettcher, P. J., Stella A., Mészáros,G., Wurzinger, M., Curik, I., Müller, M., Burgstaller, J. and Sölkner, J. (2015): Trypanosomosis: potential driver of selection in African cattle. Frontiers in Genet. 6:1-7.
  17. Sommer, S. (2005): The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zool. 2:16.
  18. Vali, U., Einarsson, A., Waits, A. L. and Ellegren, H. (2008): To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations?. Molecular Ecol. 17: 3808-3817.
  19. Vandre, R. K., Gowane, G. R., Sharma, A. K. and Tomar, S. S. (2014): Immune responsive role of MHC class II DQA1 gene in livestock. Livest. Rese. Inter. 2: 1-7.
  20. Wu, H. L., Tong, C. C., Li, E. and Luo, T. L. (2012): Insight into gene evolution within Cervidae and Bovidae through genetic variation in MHC-DQA in the black muntjac (Muntiacus crinifrons). Genet, and Molecular Rese.11: 2888-2898.
  21. Zhou, H., Hickford, J. G. H. and Fang Q. (2005): Polymorphism of DQA2 gene in goats. J. of Ani. Scien. 83: 963-8. 

Global Footprints