Transtracheal wash was performed in 36 buffaloes (10 healthy and 26 diseased). None of the animal exhibited post sampling complications. The mean volume of TTW sample recovered was 22.76±1.18 ml. A sample having mild to moderate turbidity along with mucus was found to be sample of diagnostic value.
Cytological profiles of transtracheal wash in apparently healthy buffaloes
Stained smears made from the TTW samples of healthy buffaloes were evaluated for cellular profiles. Mean cell number per HPF (high power field) was 30.07±4.90 cells. The mean values and proportion of different cells in TTW are given in Table 1. Alveolar macrophages (57.7±4.6 per cent) were the predominant cells followed by neutrophils (20.2±1.6 per cent), epithelial cells (16.1±3.48 per cent), lymphocytes (5.1±0.9 per cent) and other cells (0.9±0.4) (Fig 1). Other cells included mast cell, fibroblast and unidentified nucleated cells. Similar findings were also reported in healthy calves and healthy horses (
Whitwell and Greet, 1984). Alveolar macrophages were variable in size and occasionally binucleated with minimal cytoplasmic vacuolation. Neutrophils were characterized by dense segmented nuclei and slightly granular cytoplasm. Size and morphology were similar to that of peripheral circulating polymorphonuclear cells. Percentage neutrophils found in present study were slightly higher than those reported in recent study (17.8±2.34%) in cattle by
Narang (2017). Neutrophils comprise less than 20% of the nucleated cell population in tracheal aspirates from healthy horses
(Christely et al., 2001 and
Bain, 1997). Higher neutrophil count in buffaloes as compared to cattle might be due to greater exposure of larger airways to noxious influences, depending upon environmental and housing conditions around animals as stated by
Hewson and Viel (2002). Varied numbers of epithelial cells were observed in tracheal aspirates with mean value of 16.1±3.48 per cent, which were close to the values recorded by
Sharma (2019) in cattle. Two types of these cells were observed i.e., ciliated columnar and squamous epithelial cells. Anatomically, ciliated columnar epithelial cell and squamous epithelial cell lines the trachea and nasopharynx, respectively. Presence of squamous epithelial cells can be used as an indicator of nasopharyngeal contamination of tracheal aspirate sample. Ciliated epithelial cells are characterised by small, round, basal nuclei and moderate amounts of cytoplasm (Fig 1). Cilia may or may not be visible and columnar cells may appear as cuboidal (transversal section) depending upon the orientation of the cells on the slide
(Cian et al., 2015). Lymphocytes were characterized by round, central or eccentric nuclei with dense, clumped chromatin and scant amounts of cytoplasm with smooth margins. The proportion of lymphocytes observed in our study was almost similar to the findings of
Abutarbush et al., (2019) in normal cattle.
Richard et al., (2010) also observed low percentage of lymphocytes which corroborates with present study. In contrast to this,
Aslan et al., (2002) observed higher percentage of lymphocytes (13.3±3.20 per cent) in healthy calves. The observed variation in differential cell count from other studies might be due to effect of environmental and managemental conditions or the species difference.
Cytological profile of transtracheal washes in diseased buffaloes
Diagnosis of different types of lower respiratory tract affections in buffaloes was made on the basis of cytology of TTW in correlation with history and comprehensive clinical examination. The affections like aspiration pneumonia, suppurative pneumonia, fibrinopurulent pneumonia, chronic pneumonia and tuberculous pneumonia were diagnosed.
Aspiration pneumonia
Four buffaloes were affected with aspiration pneumonia. Gross evaluation of tracheal aspirate in these buffaloes revealed greenish coloured aspirate, small sized feed particles, increased mucus content and turbidity. On cytological examination, mean cell number (120.97±5.05) was significantly increased (four folds) as compared to that of apparently healthy animals (Table 1). Bacteria were evident in smears of all the samples. The bacteria varied in morphology and were larger in size resembling gut micro flora, which suggests the aspiration of gut contents.
Cytological profile revealed numerous neutrophils followed by macrophages and epithelial cells. Percentage of neutrophils and epithelial cells were significantly high whereas percentage of macrophages were significantly low as compared to apparently healthy animals. In contrary to this,
Narang (2017) observed high alveolar macrophages in cattle affected with aspiration pneumonia. Any septic foreign material aspirated in lungs can cause inflammation may lead to increase in neutrophil percentage as seen in this study. Increase in epithelial cell count might be due to exfoliation that occurred due to irritation of tracheal lining by the aspirated material. The gross and cytological evaluation of TTW along with clinical findings helps making definitive diagnosis even if history of aspiration or faulty drenching is not reported by the animal owner as happened in one of four cases of aspiration pneumonia in present study.
Suppurative pneumonia and fibrinopurulent pneumonia
Based on cytological examination of tracheal aspirates, a total of twelve cases were diagnosed and classified as suppurative pneumonia (n=8) and fibrinopurulent pneumonia (n=4). Gross examination of TTW sample revealed high turbidity which represent high leucocyte cell count as observed by
Cian et al., (2015) in horses. On comparison to control group animals, cytology revealed significant increase in mean cell number (Table 1). Neutrophils were the predominant cells and its percentage increased significantly as compared to healthy animals. Since, neutrophils are the characteristic feature of acute inflammation; increase in their number in present study can be explained by this fact. The proportion of cells like macrophage, lymphocyte and epithelial cells were significantly decreased which can be attributed to relative increase in neutrophils.
It was noticed that majority of neutrophils in animals affected with suppurative pneumonia were degenerated (Fig 2), which is suggestive of suppuration. Degenerated neutrophils exhibited swollen nuclei that partially lose their lobulation (karyolysis), with smooth and pale chromatin and may contain cytoplasmic vacuolations. Numerous bacteria, mostly of identical morphology, were evident in three out of eight cases of suppurative pneumonia. On the other hand, fibrin strands along with large number of neutrophils were visible in all four cases of fibrinopurulent pneumonia (Fig 3). Fibrinopurulent pneumonia was characterised by acute inflammation and accumulation of fibrin in lungs as reported by
Vegad (2007) which explains our findings in present study.
Chronic pneumonia
Eight buffaloes were affected with chronic pneumonia. Gross examination of TTW in these animals revealed mild to moderate turbidity along with varied amount of mucus. Mean cell number increased 2.9 folds as compared to healthy animals (Table 1). Macrophages were the predominant cells observed followed by neutrophils, epithelial cells and lymphocytes. Some morphological changes in macrophages such as activated macrophages; binucleated and even trinucleated macrophages were noticed. These variations in the morphology of macrophages might be due to their ability to fuse and form multi-nucleated giant cells in chronic inflammation (
Vegad, 2007).
Sharma et al., (2009) reported alveoli filled with cellular exudates predominated by large number of macrophages, in histopathological examination of chronic bronchopneumonia.
Percentage of neutrophils and epithelial cells were comparable to that of apparently healthy animals but percentage of lymphocytes were significantly (p<0.05) increased. This elevation of lymphocyte count can be understood by the fact that in chronic inflammation, lymphocytes work in conjunction with antigen presenting cells to process antigens, thereby coordinating a suitable inflammatory response and also along with plasma cells, lymphocytes and multinucleated giant cells take part in the chronic inflammatory response. Similar findings were also observed in chronic respiratory disorders by
Allen et al., (1992). Thirunavukkarasu et al., (2005) also reported increase in lymphocyte count in bronchoalveolar lavage fluid from cattle affected with chronic respiratory affections.
Tuberculous pneumonia
Two cases were identified under this category. Gross examination of TTW revealed mild cloudiness in one and moderate cloudiness in another sample. The mean cell number was significantly higher as compared to control group but there was no significant difference in mean values of any of the cell (macrophage, neutrophil, lymphocyte and epithelial cell). Similar findings were also reported by Narang (2017) in cattle affected with tuberculosis.
Activated macrophages were observed in cytology as in other diseased animals. Similar to chronic pneumonia, giant cells were frequently visible. Special types of giant cells called langhans giant cells (Fig 4) were observed in cytological examination which were formed by the fusion of many macrophages and are the characteristic of tuberculosis
(Pinheiro et al., 2012). A pathomorphological study of bovine tuberculosis in cattle by
Singh et al., (2017) reported langhans giant cells along with macrophages, lymphocytes and neutrophils present towards periphery of granulomatous lesions. The tracheal wash cytological findings were well supported by history and clinical signs in these buffaloes.
Bacteriological profile of transtracheal aspirates
Apparently healthy buffaloes
Bacterial growth was evident in TTW of four out of ten (40%) healthy buffaloes. A total of eight bacterial isolates were obtained from these four samples.
Staphylococcus spp. (50%) was the predominant bacteria followed by
Bacillus spp. (25%). This finding was supported by (
Şeker et al., 2009), who also found
Staphylococcus spp. as the predominant bacteria isolated from the nasal swab samples of healthy Anatolian water buffalo.
E. coli and
Klebsiella pneumoniae were obtained least (12.5% each). Among these isolates, single bacterial species was isolated in 25 per cent and more than one bacterial species in 75 per cent of the culture positive samples (Table 2).
In present study, none of the TTW culture from apparently healthy animal was positive for
Pasteurella multocida. In contrast to our study,
Narang (2017) reported
Pasteurella multocida followed by
Staphylococcus spp. as the predominant bacteria isolated from TTW of healthy cattle.
Diseased buffaloes
Higher percentage of TTW samples (76.9%) from diseased buffaloes were found positive for bacteriological culture than control animals (40%). A total of 30 bacterial isolates were obtained from 20 TTW samples out of 26. Rest six samples showed no bacterial growth which might be due to antibiotic treatment given prior presentation of the animal in clinics.
Hartel et al., (2004) observed bacterial growth in 21% of TTW from sick calves whereas;
Virtala et al., (1996) reported bacterial growth in 90% of the TTW from sick calves.
Staphylococcus aureus (26.67%) and
Klebsiella pneumoniae (20%) followed by
P. multocida (16.67%),
Streptococcus spp. (13.33%),
E. coli (13.33%) and
Bacillus spp. (10%) were found among the total bacterial isolates from diseased buffaloes in the present study. Among these isolates, single bacterial species was isolated in 43.3% and more than one bacterial species in 56.7% of culture positive samples (Table 3).
Similar to our study,
Kumar et al., (2015) also reported
Staphylococcus aureus as the predominantly isolated bacteria whereas;
P. multocida was isolated from only 4% of the buffaloes suffering from respiratory diseases.
Narang (2017) reported
P. multocida as second most common isolate after
Staphylococcus spp., in cattle affected with lower respiratory tract affections. It was observed that
P. multocida was mostly (80%) isolated as dominant and single etiological agent followed by
Klebsiella pneumoniae (66.6%).