Newcastle disease (ND) is a dreadful and contagious disease affecting more than 250 species of birds worldwide
(Kaleta and Baldauf, 1988). In India, ND remains a potential threat to the poultry industry causing severe economic loss. The disease caused by
Avian orthoavulavirus1(AOAV-1) (formerly designated as Newcastle disease virus (NDV) is grouped under the genus
Orthoavulavirus with in the new subfamily
Avulavirinae of
Paramyxoviridae family under the order
Mononegavirales (ICTV, 2019). AOAV-1 strains are broadly grouped in to lentogenic (non-virulent), mesogenic (moderately virulent) and velogenic (highly virulent) on the basis of its pathogenicity for chickens
(OIE 2021). The genome is non-segmented negative sense (NS) single stranded RNA genome comprising of six genes coding namely nucleoprotein (NP), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin-neuraminidase (HN) and the large protein (L). These genes are flanked on 3‘ and 5‘ ends with short non-transcribed regions called leader and trailer respectively, which are essential for replication and packaging of genome
(Dortmans et al., 2010) To control ND, vaccines prepared from lentogenic strains preferably with ICPI less than 0.4 as recommended by OIE are commonly used as live vaccines. Mesogenic strains are used in older birds as they can cause clinical signs in birds less than 6 weeks of age. In Indian scenario, the inability of conventional vaccines to differentiate naturally infected and vaccinated birds pose great challenge in eradication of ND. Rational ND vaccine strategy based on reverse genetics allows such serological differentiation
(Peeters et al., 2001).
However, such reverse genetic system for a lentogenic ND strain which provides a platform for genome modification and aids in the development of a candidate ND marker vaccine strain is currently not available in India. For this to be accomplished, successful reverse genetics system needs to be developed. The complex reverse genetics strategies for Negative sense RNA viruses necessitate the need for a verification system to evaluate the virus rescue system. This is fulfilled by minigenome (MG) system in which the role of leader and trailer sequences of AOAV-1 is utilized to construct a verification system.
MG system is an artificially constructed plasmid vector that consists of a reporter gene in antisense orientation replacing the six transcriptional units of AOAV-1 genome and flanked by the 3‘ leader and 5‘ trailer genomic sequences of AOAV-1 under the control of T7 promoter. The artificially constructed MG plasmid is co-transfected with the helper plasmids of AOAV-1 (NP, P and L) in T7 polymerase expression system like BSRT7/5 cell line. The expression of the reporter gene verifies the rescue system developed for AOAV-1
(Feng et al., 2011).
Though virus rescue system was successfully developed earlier for different strains of NDV
(Peeters et al., 2001;
Yu et al., 2012), the rescue system developed for one strain cannot be directly applied to a new AOAV-1 strain. This is because the rescue efficiency is decided by many factors, like efficient and contiguous cloning of full-length anti-genome with precise ends, following “rule of six” (Genome of
Paramyxoviridae should be divisible by six for efficient replication of virus), selection of suitable transcription vector, suitable source of RNA polymerase, ratio and concentration of expression plasmids used in transfection and so on.
The MG construction involves modification of plasmid vector to assemble the various DNA fragments in appropriate orientation using suitable cloning methods. The limitations of ligation dependent method like non-availability of unique restriction sites, the need for vector pretreatment restricting the choice of vector necessitates the need for alternative ligation independent cloning methods. Ligation independent cloning (LIC) method like the exonuclease mediated ligation independent cloning (LIC), recombination based cloning and PCR based cloning are considered as suitable alternatives
(Celie et al., 2016). Among these methods, the PCR based restriction free (RF) cloning which is based on Splicing by overlap extension (SOE) PCR and employs whole plasmid amplification of insert and vector
(Van Den Ent and Löwe, 2006) is used in this study as a restriction free cloning technique to perform both the cloning and vector modifications with simple reagents and without the use of commercial kits.
The lentogenic D58 vaccine strain of AOAV-1 used in this study was isolated from unvaccinated healthy chicken
(Ananth et al., 2008) with an ICPI value of 0.14. This D58 lentogenic strain in addition to its low ICPI value has thermostable and immunogenic property. Also, the pro-inflammatory cytokine response produced by this vaccine is minimal
(Ranjani et al., 2019) imparting lesser post-vaccination reactions, despite effective immune response. These properties prove the potential utility of this strain to be developed as a candidate marker vaccine. In this background, genetic manipulation of this viral genome warrants development of a virus rescue system for this strain. Virus rescue efficiency could be determined by MG system (as discussed earlier). Thus, in this study, a MG system is constructed by SOE-PCR based RF cloning for AOAV-1 D58 strain with AcGFP as reporter gene. This study was proposed to verify the functionality of the virus rescue system to recover full length genome and study the applicability SOE-PCR based RF cloning as a sole cloning technique to perform both the cloning and vector modifications in the construction of MG, independent of restriction sites as a simple and reliable cloning procedure.